欢迎来到相识电子书!
纯数学教程

纯数学教程

作者:[英] G.H.Hardy

分类:文学

ISBN:9787111137856

出版时间:2004-2

出版社:机械工业出版社

标签: 数学  数学分析  Mathematics  哈代  纯数学教程  经典 

章节目录

CHAPTER I REAL VARIABLES SECT. 1-2. Rational numbers 3-7. Irrational numbers 8. Real numbers 9. Relations of magnitude between real numbers 10-11. Algebraical operations with real numbers 12. The number 2 13-14. Quadratic surds 15. The continum 16. The continuous real variable 17. Sections of the real numbers. Dedekind's theorem 18. Points of accumulation 19. Weierstrass's theorem . Miscellaneous examples CHAPTER II FUNCTIONS OF REAL VARIABLES 20. The idea of a function 21. The graphical representation of functions. Coordinates 22. Polar coordinates 23. Polynomias 24-25. Rational functions 26-27. Aigebraical functious 28-29. Transcendental functions 30. Graphical solution of equations 31. Functions of two variables and their graphical repre- sentation 32. Curves in a plane 33. Loci in space Miscellaneous examples CHAPTER III COMPLEX NUMBERS SECT. 34-38. Displacements 39-42. Complex numbers 43. The quadratic equation with real coefficients 44. Argand's diagram 45. De Moivre's theorem 46. Rational functions of a complex variable 47-49. Roots of complex numbers Miscellaneous examples CHAPTER IV LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE 50. Functions of a positive integral variable 51. Interpolation 52. Finite and infinite classes 53-57. Properties possessed by a function of n for large values of n 58-61. Definition of a limit and other definitions 62. Oscillating functions 63-68. General theorems concerning limits 69-70. Steadily increasing or decreasing functions 71. Alternative proof of Weierstrass's theorem 72. The limit of xn 73. The limit of(1+ 74. Some algebraical lemmas 75. The limit of n(nX-1) 76-77. Infinite series 78. The infinite geometrical series 79. The representation of functions of a continuous real variable by means of limits 80. The bounds of a bounded aggregate 81. The bounds of a bounded function 82. The limits of indetermination of a bounded function 83-84. The general principle of convergence 85-86. Limits of complex functions and series of complex terms 87-88. Applications to zn and the geometrical series 89. The symbols O, o, Miscellaneous examples CHAPTER V LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS AND DISCONTINUOUS FUNCTIONS 90-92. Limits as x-- or x--- 93-97. Limits as z-, a 98. The symbols O, o,~: orders of smallness and greatness 99-100. Continuous functions of a real variable 101-105. Properties of continuous functions. Bounded functions. The oscillation of a function in an interval 106-107. Sets of intervals on a line. The Heine-Borel theorem 108. Continuous functions of several variables 109-110. Implicit and inverse functions Miscellaneous examples CHAPTER VI DERIVATIVES AND INTEGRALS 111-113. Derivatives 114. General rules for differentiation 115. Derivatives of complex functions 116. The notation of the differential calculus 117. Differentiation of polynomials 118. Differentiation of rational functions 119. Differentiation of algebraical functions 120. Differentiation of transcendental functions 121. Repeated differentiation 122. General theorems concerning derivatives, Rolle's theorem 123-125. Maxima and minima 126-127. The mean value theorem 128. Cauchy's mean value theorem SECT. 129. A theorem of Darboux 130-131. Integration. The logarithmic function 132. Integration of polynomials 133-134. Integration of rational functions 135-142. Integration of algebraical functions. Integration by rationalisation. Integration by parts 143-147. Integration of transcendental functions 148. Areas of plane curves 149. Lengths of plane curves Miscellaneous examples CHAPTER VII ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS 150-151. Taylor's theorem 152. Taylor's series 153. Applications of Taylor's theorem to maxima and minima 154. The calculation of certain limits 155. The contact of plane curves 156-158. Differentiation of functions of several variables 159. The mean value theorem for functions of two variables 160. Differentials 161-162. Definite integrals 163. The circular functions 164. Calculation of the definite integral as the limit of a sum 165. General properties of the definite integral 166. Integration by parts and by substitution 167. Alternative proof of Taylor's theorem 168. Application to the binomial series 169. Approximate formulae for definite integrals. Simpson's rule 170. Integrals of complex functions Miscellaneous examples CHAPTER VIII THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS SECT. PAGE 171-174. Series of positive terms. Cauchy's and d'Alembert's tests of convergence 175. Ratio tests 176. Dirichlet's theorem 177. Multiplication of series of positive terms 178-180. Further tests for convergence. Abel's theorem. Mac- laurin's integral test 181. The series n-s 182. Cauchy's condensation test 183. Further ratio tests 184-189. Infinite integrals 190. Series of positive and negative terms 191-192. Absolutely convergent series 193-194. Conditionally convergent series 195. Alternating series 196. Abel's and Dirichlet's tests of convergence 197. Series of complex terms 198-201. Power series 202. Multiplication of series 203. Absolutely and conditionally convergent infinite integrals Miscellaneous examples CHAPTER IX THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS OF A REAL VARIABLE 204-205. The logarithmic function 206. The functional equation satisfied by log x 207-209. The behaviour of log x as x tends to infinity or to zero 210. The logarithmic scale of infinity 211. The number e 212-213. The exponential function 214. The general power ax 215. The exponential limit 216. The logarithmic limit SECT. 217. Common logarithms 218. Logarithmic tests of convergence 219. The exponential series 220. The logarithmic series 221. The series for arc tan x 222. The binomial series 223. Alternative development of the theory 224-226. The analytical theory of the circular functions Miscellaneous examples CHAPTER X THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS 227-228. Functions of a complex variable 229. Curvilinear integrals 230. Definition of the logarithmic function 231. The values of the logarithmic function 232-234. The exponential function 235-236. The general power a 237-240. The trigonometrical and hyperbolic functions 241. The connection between the logarithmic and inverse trigonometrical functions 242. The exponential series 243. The series for cos z and sin z 244-245. The logarithmic series 246. The exponential limit 247. The binomial series Miscellaneous examples The functional equation satisfied by Log z, 454. The function e, 460. Logarithms to any base, 461. The inverse cosine, sine, and tangent of a complex number, 464. Trigonometrical series, 470, 472-474, 484, 485. Roots of transcendental equations, 479, 480. Transformations, 480-483. Stereographic projection, 482. Mercator's projection, 482. Level curves, 484-485. Definite integrals, 486. APPENDIX I. The proof that every equation has a root APPENDIX II. A note on double limit problems APPENDIX III. The infinite in analysis and geometry APPENDIX IV. The infinite in analysis and geometry INDEX

内容简介

自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。 在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。

下载说明

1、纯数学教程是作者[英] G.H.Hardy创作的原创作品,下载链接均为网友上传的网盘链接!

2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!

下载链接

热门评论

  • china-pub数理化的评论
    【独家销售】《纯数学教程(英文版·第10版)》作者是享有世界声誉的数学大师Hardy。自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。网页链接
  • Onney的评论
    lp拒绝让我购买《高观点下的初等数学》,原因是那本 哈代 的《纯数学》教程我没有看完[泪]
  • 设Epsilon小于0的评论
    物理一定是《费曼物理学讲义》,数学是《纯数学教程》~ 还有彭罗斯的《通向实在之路》《皇帝新脑》。[嘻嘻] //@madbyte:回复@格林非上帝:等大家多发表一阵观点再说,或者你先去整个豆瓣书单? //@格林非上帝:搞个长微博或豆瓣书单吧。
  • 刘珂Kenneth的评论
    古登堡项目把一些历史上的经典数学书里的数学公式用LaTeX重新粉饰了一遍。比较一下新鲜出炉的哈代《纯数学教程》(网页链接)与HTML版本(网页链接)的不同。
  • matlab2000的评论
    数学之美,对于数学家来说足矣。买了本G.H哈代的《纯数学教程》,作为以前上学的时候没有好好学习高等数学的忏悔。看数学大家的书,觉得行文流畅,看国内的教材,常看不透内在逻辑,自然生厌,更何况一般老师并不讲数学轶事,搞得学数学殊少乐趣,最终好多人都害怕数学了。
  • 保姆手记的评论
    风马牛不相及。我学不会数学,于是崇拜会数学的人,伟大! 武卫东:纯数学教程,纯炭火烤肉。在上海滩吃着六盘水来的果子...
  • 榆树榆树的评论
    // @图灵谢工 :这本书也快绝版了。 // @歌之忆 :哈代的《纯数学教程》也可以当作最好的英国文学范文来读。剑桥大学的这位数学家Hardy写作天赋极高,语言也极为出彩。他的《一个数学家的自白》倾倒无数读者。曾经有人问哈代:您不做数学的话,可以以何为业谋生?哈代回答:至少能当
  • 歌之忆的评论
    哈代的《纯数学教程》也可以当作最好的英国文学范文来读。剑桥大学的这位数学家Hardy写作天赋极高,语言也极为出彩。他的《一个数学家的自白》倾倒无数读者。曾经有人问哈代:您不做数学的话,可以以何为业谋生?哈代回答:至少能当一个好记者!
  • 武卫东的评论
    纯数学教程,纯炭火烤肉。在上海滩吃着六盘水来的果子...
  • 但以理_高博的评论
    人生的一大享受,就是在 @柚子林炭火烧肉环球店 吃掉了所有的限量牛肉和六盘水果,又吱吱地烤着鲜嫩的大虾,面前放着节日特供的白森林蛋糕,一手端着调好了微距的相机,一手拿着 @图灵社区 赠送的哈代《纯数学教程》。
  • 卫_卫卫卫卫卫卫的评论
    借一研究生学长的借书证去闭架书库借书,在书架上发现《纯数学教程》,自言自语道“纯数学是什么意思…”旁边一中年大叔转过头说:哈代的书,写微积分的,非常优美。我拿出来:全是英文的啊!这位大叔竟然形容一本写微积分书“优美”,还大学期间就读过了…偶只能底头把书放回去,立刻闪一边去了
  • 明永玲编辑的评论
    还有一本为计算机界的朋友写的数学书——《具体数学:计算机科学的基础》,已经由华东理工大学的张明尧翻译完,年底将与大家见面。张明尧也是《哈代数论(第6版)》和《纯数学教程(纪念版)》的译者。为翻译《具体数学》,张明尧在乡下闭关了几个月,我们向这样的译者致敬,也为有这样的译者自豪!