章节目录
目 录 第1章 概述 1 1.1 什么是计算机视觉? 2 1.2 简史 8 1.3 本书概述 16 1.4 课程大纲样例 21 1.5 标记法说明 22 1.6 扩展阅读 22 第2章 图像形成 25 2.1 几何基元和变换 26 2.1.1 几何基元 26 2.1.2 2D变换 29 2.1.3 3D变换 32 2.1.4 3D旋转 33 2.1.5 3D到2D投影 37 2.1.6 镜头畸变 46 2.2 光度测定学的图像形成 47 2.2.1 照明 48 2.2.2 反射和阴影 49 2.2.3 光学 54 2.3 数字摄像机 57 2.3.1 采样与混叠 60 2.3.2 色彩 63 2.3.3 压缩 71 2.4 补充阅读 72 2.5 习题 73 第3章 图像处理 77 3.1 点算子 78 3.1.1 像素变换 79 3.1.2 彩色变换 81 3.1.3 合成与抠图 81 3.1.4 直方图均衡化 83 3.1.5 应用:色调调整 86 3.2 线性滤波 86 3.2.1 可分离的滤波 89 3.2.2 线性滤波示例 90 3.2.3 带通和导向滤波器 91 3.3 更多的邻域算子 95 3.3.1 非线性滤波 95 3.3.2 形态学 99 3.3.3 距离变换 100 3.3.4 连通量 101 3.4 傅里叶变换 102 3.4.1 傅里叶变换对 105 3.4.2 二维傅里叶变换 107 3.4.3 维纳滤波 108 3.4.4 应用:锐化,模糊 和去噪 111 3.5 金字塔与小波 111 3.5.1 插值 112 3.5.2 降采样 114 3.5.3 多分辨率表达 116 3.5.4 小波 119 3.5.5 应用:图像融合 123 3.6 几何变换 125 3.6.1 参数化变换 125 3.6.2 基于网格的卷绕 131 3.6.3 应用:基于特征的变形 133 3.7 全局优化 133 3.7.1 正则化 134 3.7.2 马尔科夫随机场 138 3.7.3 应用:图像的恢复 147 3.8 补充阅读 147 3.9 习题 149 第4章 特征检测与匹配 157 4.1 点和块 159 4.1.1 特征检测器 160 4.1.2 特征描述子 169 4.1.3 特征匹配 172 4.1.4 特征跟踪 179 4.1.5 应用:表演驱动的动画 181 4.2 边缘 182 4.2.1 边缘检测 182 4.2.2 边缘连接 187 4.2.3 应用:边缘编辑和增强 189 4.3 线条 190 4.3.1 逐次近似 191 4.3.2 Hough变换 191 4.3.3 消失点 194 4.3.4 应用:矩形检测 196 4.4 扩展阅读 197 4.5 习题 198 第5章 分割 205 5.1 活动轮廓 206 5.1.1 蛇行 207 5.1.2 动态蛇行和 CONDENSATION 211 5.1.3 剪刀 214 5.1.4 水平集 215 5.1.5 应用:轮廓跟踪和 转描机 217 5.2 分裂与归并 218 5.2.1 分水岭 218 5.2.2 区域分裂(区分式聚类) 219 5.2.3 区域归并(凝聚式聚类) 219 5.2.4 基于图的分割 219 5.2.5 概率聚集 220 5.3 均值移位和模态发现 221 5.3.1 k-均值和高斯混合 222 5.3.2 均值移位 224 5.4 规范图割 227 5.5 图割和基于能量的方法 230 5.6 补充阅读 234 5.7 习题 235 第6章 基于特征的配准 237 6.1 基于2D和3D特征的配准 238 6.1.1 使用最小二乘的 2D配准 238 6.1.2 应用:全景图 240 6.1.3 迭代算法 241 6.1.4 鲁棒最小二乘 和RANSAC 243 6.1.5 3D配准 245 6.2 姿态估计 246 6.2.1 线性算法 246 6.2.2 迭代算法 248 6.2.3 应用:增强现实 249 6.3 几何内参数标定 250 6.3.1 标定模式 250 6.3.2 消失点 252 6.3.3 应用:单视图测量学 253 6.3.4 旋转运动 254 6.3.5 径向畸变 256 6.4 补充阅读 257 6.5 习题 258 第7章 由运动到结构 263 7.1 三角测量 264 7.2 二视图由运动到结构 266 7.2.1 投影(未标定的)重建 270 7.2.2 自标定 271 7.2.3 应用:视图变形 273 7.3 因子分解 274 7.3.1 透视与投影因子分解 276 7.3.2 应用:稀疏3D模型 提取 277 7.4 光束平差法 278 7.4.1 挖掘稀疏性 280 7.4.2 应用:匹配运动和增强 现实 282 7.4.3 不确定性和二义性 283 7.4.4 应用:由因特网照片 重建 284 7.5 限定结构和运动 287 7.5.1 基于线条的方法 287 7.5.2 基于平面的方法 288 7.6 补充阅读 289 7.7 习题 290 第8章 稠密运动估计 293 8.1 平移配准 294 8.1.1 分层运动估计 297 8.1.2 基于傅里叶的配准 298 8.1.3 逐次求精 300 8.2 参数化运动 305 8.2.1 应用:视频稳定化 308 8.2.2 学到的运动模型 308 8.3 基于样条的运动 309 8.4 光流 312 8.4.1 多帧运动估计 315 8.4.2 应用:视频去噪 316 8.4.3 应用:去隔行扫描 316 8.5 层次运动 317 8.5.1 应用:帧插值 319 8.5.2 透明层和反射 320 8.6 补充阅读 321 8.7 习题 322 第9章 图像拼接 327 9.1 运动模型 329 9.1.1 平面透视运动 329 9.1.2 应用:白板和文档扫描 330 9.1.3 旋转全景图 331 9.1.4 缝隙消除 333 9.1.5 应用:视频摘要和压缩 334 9.1.6 圆柱面和球面坐标 335 9.2 全局配准 338 9.2.1 光束平差法 338 9.2.2 视差消除 341 9.2.3 认出全景图 343 9.2.4 直接配准和基于特征的 ?配准 345 9.3 合成 346 9.3.1 合成表面的选择 346 9.3.2 像素选择和加权 (去虚影) 348 9.3.3 应用:照片蒙太奇 352 9.3.4 融合 353 9.4 补充阅读 355 9.5 习题 356 第10章 计算摄影学 359 10.1 光度学标定 361 10.1.1 辐射度响应函数 362 10.1.2 噪声水平估计 363 10.1.3 虚影 364 10.1.4 光学模糊(空间响应) 估计 365 10.2 高动态范围成像 368 10.2.1 色调映射 374 10.2.2 应用:闪影术 380 10.3 超分辨率和模糊去除 381 10.3.1 彩色图像去马赛克 385 10.3.2 应用:彩色化 387 10.4 图像抠图和合成 388 10.4.1 蓝屏抠图 389 10.4.2 自然图像抠图 391 10.4.3 基于优化的抠图 394 10.4.4 烟、阴影和闪抠图 396 10.4.5 视频抠图 397 10.5 纹理分析与合成 398 10.5.1 应用:空洞填充 与修图 400 10.5.2 应用:非真实感绘制 401 10.6 补充阅读 403 10.7 习题 404 第11章 立体视觉对应 409 11.1 极线几何学 412 11.1.1 矫正 412 11.1.2 平面扫描 414 11.2 稀疏对应 416 11.3 稠密对应 418 11.4 局部方法 420 11.4.1 亚像素估计 与不确定性 422 11.4.2 应用:基于立体视觉的 头部跟踪 423 11.5 全局优化 424 11.5.1 动态规划 425 11.5.2 基于分割的方法 427 11.5.3 应用:z-键控与背景 替换 428 11.6 多视图立体视觉 429 11.6.1 体积与3D表面重建 432 11.6.2 由轮廓到形状 436 11.7 补充阅读 438 11.8 习题 439 第12章 3D重建 443 12.1 由X到形状 444 12.1.1 由阴影到形状与光度 测量立体视觉 445 12.1.2 由纹理到形状 447 12.1.3 由聚焦到形状 448 12.2 主动距离获取 449 12.2.1 距离数据归并 451 12.2.2 应用:数字遗产 453 12.3 表面表达 454 12.3.1 表面插值 454 12.3.2 表面简化 455 12.3.3 几何图像 456 12.4 基于点的表达 456 12.5 体积表达 457 12.6 基于模型的重建 459 12.6.1 建筑结构 459 12.6.2 头部和人脸 461 12.6.3 应用:脸部动画 463 12.6.4 完整人体建模与跟踪 465 12.7 恢复纹理映射与反照率 469 12.7.1 估计BRDF 470 12.7.2 应用:3D摄影学 471 12.8 补充阅读 472 12.9 习题 473 第13章 基于图像的绘制 477 13.1 视图插值 478 13.1.1 视图相关的纹理映射 480 13.1.2 应用:照片游览 481 13.2 层次深度图像 482 13.3 光场与发光图 484 13.3.1 非结构化发光图 487 13.3.2 表面光场 488 13.3.3 应用:同心拼图 489 13.4 环境影像形板 490 13.4.1 更高维光场 491 13.4.2 从建模到绘制 492 13.5 基于视频的绘制 493 13.5.1 基于视频的动画 493 13.5.2 视频纹理 494 13.5.3 应用:图片动画 497 13.5.4 3D视频 497 13.5.5 应用:基于视频的 游览 499 13.6 补充阅读 501 13.7 习题 503 第14章 识别 507 14.1 物体检测 509 14.1.1 人脸检测 509 14.1.2 行人检测 515 14.2 人脸识别 518 14.2.1 特征脸 518 14.2.2 活动表观与3D形状 模型 525 14.2.3 应用:个人照片收藏 528 14.3 实例识别 529 14.3.1 几何配准 530 14.3.2 大型数据库 531 14.3.3 应用:位置识别 535 14.4 类别识别 537 14.4.1 词袋 539 14.4.2 基于部件的模型 542 14.4.3 基于分割的识别 545 14.4.4 应用:智能照片编辑 548 14.5 上下文与场景理解 550 14.5.1 学习与大型图像收集 552 14.5.2 应用:图像搜索 554 14.6 识别数据库和测试集 555 14.7 补充阅读 559 14.8 习题 562 第15章 结语 567 附录A 线性代数与数值方法 569 A.1 矩阵分解 570 A.1.1 奇异值分解 570 A.1.2 特征值分解 571 A.1.3 QR因子分解 573 A.1.4 乔里斯基分解 574 A.2 线性最小二乘 575 A.3 非线性最小二乘 578 A.4 直接稀疏矩阵方法 579 A.5 迭代方法 580 A.5.1 共轭梯度 581 A.5.2 预处理 582 A.5.3 多重网格 583 附录B 贝叶斯建模与推断 585 B.1 估计理论 586 B.2 最大似然估计与最小二乘 589 B.3 鲁棒统计学 590 B.4 先验模型与贝叶斯推断 591 B.5 马尔科夫随机场 592 B.5.1 梯度下降与模拟退火 594 B.5.2 动态规划 595 B.5.3 置信传播 596 B.5.4 图割 598 B.5.5 线性规划 601 B.6 不确定性估计(误差分析) 602 附录C 补充材料 604 C.1 数据集 605 C.2 软件 607 C.3 幻灯片与讲座 615 C.4 参考文献 615 词汇表 617
内容简介
《计算机视觉——算法与应用》探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与交织之类有趣的大众应用,以便学生能够将其应用于自己的照片和视频,从中获得成就感和乐趣。本书从科学的角度介绍基本的视觉问题,将成像过程的物理模型公式化,然后在此基础上生成对场景的逼真描述。作者还运用统计模型来分析和运用严格的工程方法来解决这些问题。 本书作为本科生和研究生“计算机视觉”课程的理想教材,适合计算机和电子工程专业学生使用,重点介绍现实中行之有效的基本技术,通过大量应用和练习来鼓励学生大胆创新。此外,本书的精心设计和编排,使其可以作为计算机视觉领域中一本独特的基础技术参考和最新研究成果文献。
下载说明
1、计算机视觉是作者Richard Szeliski创作的原创作品,下载链接均为网友上传的网盘链接!
2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!
下载链接
热门评论
-
沈曉白_低落中的评论【从Magic Leap出走的博士说,计算机视觉有三个变化值得关注】从1966年到2016年,正好恰恰过去了五十年,过去的五十年计算机视觉发展非常快。今天计算机视觉是不是变成了很成熟、很完美的技术?并不是。 从Magic Lea...
-
王威廉的评论CNN Money深度报道了斯坦福人工智能实验室主任Fei-Fei Li的成长和移民之路:网页链接 从刚来美国困难时期的保洁、中餐馆收银、遛狗、干洗店工作,到现在国际人工智能和计算机视觉领域的推动者。非常值得学习与深思。
-
爱可可-爱生活的评论《从Magic Leap出走的博士说,计算机视觉有三个变化值得关注》via:@钛媒体 从Magic Lea...
-
Linuxeden开源社区的评论【用 Go 实现图片尺寸的自动调节 】 我刚上大学那会儿,课上到最后几分钟的时候,我会翘课奔到另外一个我几乎不怎么了解的班上去蹭课。碰巧,那个班上的课是我觉得最棒的课之一 计算机视觉。此外,那个课上介绍了一种很赞的算法:Seam …网页链接
-
桶匠的评论围绕自动驾驶所需要的图像识别、计算机视觉、深度学习等关键技术的投资热度在明显增强。硅谷VC为何加大投资...
-
车云网的评论特斯拉自动驾驶死亡事故给全世界带来了极大的震惊,但这并不意味着基于坏消息之上的关注全然没有正面意义。不少风投看到了机会,认为传感器芯片为代表的硬件研发,以及计算机视觉为支撑的软件技术,将会迎来更大的关注度。 特斯拉命案后,为什么...
-
无处安放的双下巴的评论给跪。。。。计算机视觉、机器学习相关领域论文和源代码大集合--持续更新…… - zouxy09的专栏 - 博客频道 - CSDN.NET 网页链接
-
钛媒体的评论【从Magic Leap出走的博士说,计算机视觉有三个变化值得关注】从1966年到2016年,正好恰恰过去了五十年,过去的五十年计算机视觉发展非常快。今天计算机视觉是不是变成了很成熟、很完美的技术?xPerception创始人包英泽不这么认为。从Magic Lea...
-
Jojo_Wang28的评论评论@艺树网黄磊 的博文【计算机视觉基础4——对极几何(Epipolar Geometry)】:"你好,请问文中引用的公式以及图片来源于哪个文章呢?博客写的很好想深入研究下~"查看原文:计算机视觉基础4——...
-
解密黑科技的评论xPerception:解决AI和人类之间“最后一公里” 2016-07-14 14:53 眼睛是人类接触外部世界的第一感官。而对计算机来说,它们的“眼睛”就是计算机视觉感知技术。正是由于这种技术,计算机才...文字版>> 网页链接 (新浪长微博>> 长微博_长微博工具_...)
-
侠客牛市风云的评论昨夜美股收高,道指上涨0.13%,纳指上涨0.22%,标普上涨0.22%,欧洲主要国家股市收高。纽约原油期货上涨1.43美元,涨幅为3.1%,收于每桶48.22美元;纽约黄金期货上涨8.4美元,涨幅为0.6%,收于每盎司1357.2美元。奥巴马将于9月2-9日访问中国和越南;苹果公布两项计算机视觉相关技术专利(涉华平股份、
-
滇无敌的评论苹果革命性专利聚焦机器视觉 本周,苹果公布了两项计算机视觉相关的技术专利,它们能通过 3D 运动与空间技术跟 Mac 或 iOS 设备进行互动。业内指出,作为世界科技 巨头,苹果是最值得关注与追踪的,苹果倡导了多项技术,而后行业也快速跟风追随它的步伐。此次苹果获得两项机器视觉专利,将为科技
-
最靓分析师-李姐的评论机器视觉:本周苹果公布了两项计算机视觉相关的技术专利,它们能通过3D运动与空间技术跟Mac或iOS设备进行互动,未来几年我国机器视觉产业规模将继续保持稳定增长,中国机器视觉市场规模到2020年有望达到千亿元级水平,行业正迎来一个前所未有的“机遇期”。 标的:大恒科技、万讯自控、汉王科技
-
侠女论股V的评论【苹果革命性专利聚焦机器视觉 概念股望爆发】据外媒报道,本周,苹果公布了两项计算机视觉相关的技术专利,它们能通过3D运动与空间技术跟Mac或iOS设备进行互动。其中专利号为9417706的专利能通过摄像头观察用户的手部运动,进而让用户界面从一个状态... 网页链接
-
燕尾点波绿皱的评论寻合作伙伴,开发手相APP. 1. 产品经理:拥有app设计和推广经验; 2. 项目研发:计算机视觉领域。 业余合作,快乐的做点有趣的事情,顺带补贴家用。项目说明: t.cn/zOhwpts
-
新浪数码的评论【用手势控制电脑 苹果新专利让你丢掉鼠标和键盘】苹果最新发布了两项计算机视觉相关的技术专利。凭借这两项专利,用户将不再需要键盘、鼠标,直接使用手势动作就可以在空间范围内完成对电脑或者其他iOS设备的操控。 苹果新专利让你丢掉鼠...
-
马七七七的K的评论从昨天一个细分领域一不小心打开了一个新世界的大门,机器视觉&计算机视觉&机器识别,虽然看不懂,但看上去real好玩的样子啊。。。现在开始补各种算法语言肯定是太晚了,但多补一点不至于以后抓瞎肯定是好的,总不能像昨晚那样人家跟XX说孟山都XX问了半天孟山都是啥吧
-
我爱机器学习的评论有哪些比较好的机器学习、数据挖掘、计算机视觉的订阅号、微博或者是论坛?知乎:有哪些比较好的机器学...
-
灵心zoe的评论资讯|据外媒AppleInsider报道,本周,苹果最新发布了两项计算机视觉相关的技术专利。凭借这两项专利......(null) ,分享自@百度手机浏览器 (上百度浏览器,做个有趣的人) 网页链接
-
我爱机器学习的评论[为什么深度学习几乎成了计算机视觉研究的标配?]网页链接 CVPR 2016上,深度学习几乎成了如今计算机视觉研究的标配,人脸识别、图像识别、视频识别、行人检测、大规模场景识别的相关论文里都用到了深度学习的方法,为什么深度学习几乎成了计算机视觉研究的标配?