章节目录
1 introduction to probability theory 1.1 introduction 1.2 sample space and events 1.3 probabilities defined on events 1.4 conditional probabilities 1.5 independent events 1.6 bayes' formula exercises references 2 random variables 2.1 random variables 2.2 discrete random variables 2.2.1 the bernoulli random variable 2.2.2 the binomial random variable 2.2.3 the geometric random variable 2.2.4 the poisson random variable 2.3 continuous random variables 2.3.1 the uniform random variable 2.3.2 exponential random variables 2.3.3 gamma random variables 2.3.4 normal random variables 2.4 expectation of a random variable 2.4.1 the discrete case 2.4.2 the continuous case 2.4.3 expectation of a function of a random variable 2.5 jointly distributed random variables 2.5.1 joint distribution functions 2.5.2 independent random variables 2.5.3 covariance and variance of sums of random variables 2.5.4 joint probability distribution of functions of randomvariables 2.6 moment generating functions 2.6.1 the joint distribution of the sample mean and sample variance from a normal population 2.7 the distribution of the number of events that occur 2.8 limit theorems 2.9 stochastic processes exercises references 3 conditional probability and conditional expectation 3.1 introduction 3.2 the discrete case 3.3 the continuous case 3.4 computing expectations by conditioning 3.4.1 computing variances by conditioning 3.5 computing probabilities by conditioning 3.6 some applications 3.6.1 a list model 3.6.2 a random graph 3.6.3 uniform priors, polya's urn model, and bose-einstein statistics 3.6.4 mean time for patterns 3.6.5 the k-record values of discrete random variables 3.6.6 left skip free random walks 3.7 an identity for compound random variables 3.7.1 poisson compounding distribution 3.7.2 binomial compounding distribution 3.7.3 a compounding distribution related to the negative binomial exercises 4 markov chains 4.1 introduction 4.2 chapman-kolmogorov equations 4.3 classification of states 4.4 limiting probabilities 4.5 some applications 4.5.1 the gambler's ruin problem 4.5.2 a model for algorithmic efficiency 4.5.3 using a random walk to analyze a probabilistic algorithm for the satisfiability problem 4.6 mean time spent in transient states 4.7 branching processes 4.8 time reversible markov chains 4.9 markov chain monte carlo methods 4.10 markov decision processes 4.11 hidden markov chains 4.11.1 predicting the states exercises references 5 the exponential distribution and the poisson process 5.1 introduction 5.2 the exponential distribution 5.2.1 definition 5.2.2 properties of the exponential distribution 5.2.3 further properties of the exponential distribution 5.2.4 convolutions of exponential random variables 5.3 the poisson process 5.3.1 counting processes 5.3.2 definition of the poisson process 5.3.3 interarrival and waiting time distributions 5.3.4 further properties of poisson processes 5.3.5 conditional distribution of the arrival times 5.3.6 estimating software reliability 5.4 generalizations of the poisson process 5.4.1 nonhomogeneous poisson process 5.4.2 compound poisson process 5.4.3 conditional or mixed poisson processes exercises references 6 continuous-time markov chains 6.1 introduction 6.2 continuous-time markov chains 6.3 birth and death processes 6.4 the transition probability function pij (t) 6.5 limiting probabilities 6.6 time reversibility 6.7 uniformization 6.8 computing the transition probabilities exercises references 7 renewal theory and its applications 7.1 introduction 7.2 distribution of n(t) 7.3 limit theorems and their applications 7.4 renewal reward processes 7.5 regenerative processes 7.5.1 alternating renewal processes 7.6 semi-markov processes 7.7 the inspection paradox 7.8 computing the renewal function 7.9 applications to patterns 7.9.1 patterns of discrete random variables 7.9.2 the expected time to a maximal run of distinct values 7.9.3 increasing runs of continuous random variables 7.10 the insurance ruin problem exercises references 8 queueing theory 8.1 introduction 8.2 preliminaries 8.2.1 cost equations 8.2.2 steady-state probabilities 8.3 exponential models 8.3.1 a single-server exponential queueing system 8.3.2 a single-server exponential queueing system having finite capacity 8.3.3 birth and death queueing models 8.3.4 a shoe shine shop 8.3.5 a queueing system with bulk service 8.4 network of queues 8.4.1 open systems 8.4.2 closed systems 8.5 the system m/g/1 8.5.1 preliminaries: work and another cost identity 8.5.2 application of work to m/g/1 8.5.3 busy periods 8.6 variations on the m/g/1 8.6.1 the m/g/1 with random-sized batch arrivals 8.6.2 priority queues 8.6.3 an m/g/1 optimization example 8.6.4 the m/g/1 queue with server breakdown 8.7 the model g/m/1 8.7.1 the g/m/1 busy and idle periods 8.8 a finite source model 8.9 multiserver queues 8.9.1 erlang's loss system 8.9.2 the m/m/k queue 8.9.3 the g/m/k queue 8.9.4 the m/g/k queue exercises references 9 reliability theory 9.1 introduction 9.2 structure functions 9.2.1 minimal path and minimal cut sets 9.3 reliability of systems of independent components 9.4 bounds on the reliability function 9.4.1 method of inclusion and exclusion 9.4.2 second method for obtaining bounds on r(p) 9.5 system life as a function of component lives 9.6 expected system lifetime 9.6.1 an upper bound on the expected life of a parallel system 9.7 systems with repair 9.7.1 a series model with suspended animation exercises references 10 brownian motion and stationary processes 10.1 brownian motion 10.2 hitting times, maximum variable, and the gambler's ruin problem 10.3 variations on brownian motion 10.3.1 brownian motion with drift 10.3.2 geometric brownian motion 10.4 pricing stock options 10.4.1 an example in options pricing 10.4.2 the arbitrage theorem 10.4.3 the black-scholes option pricing formula 10.5 white noise 10.6 gaussian processes 10.7 stationary and weakly stationary processes 10.8 harmonic analysis of weakly stationary processes exercises references 11 simulation 11.1 introduction 11.2 general techniques for simulating continuous random variables 11.2.1 the inverse transformation method 11.2.2 the rejection method 11.2.3 the hazard rate method 11.3 special techniques for simulating continuous random variables 11.3.1 the normal distribution 11.3.2 the gamma distribution 11.3.3 the chi-squared distribution 11.3.4 the beta (n, m) distribution 11.3.5 the exponential distribution-the von neumann algorithm 11.4 simulating from discrete distributions 11.4.1 the alias method 11.5 stochastic processes 11.5.1 simulating a nonhomogeneous poisson process 11.5.2 simulating a two-dimensional poisson process 11.6 variance reduction techniques 11.6.1 use of antithetic variables 11.6.2 variance reduction by conditioning 11.6.3 control variates 11.6.4 importance sampling 11.7 determining the number of runs 11.8 generating from the stationary distribution of a markov chain 11.8.1 coupling from the past 11.8.2 another approach exercises references appendix: solutions to starred exercises index
内容简介
《应用随机过程:概率模型导论(英文版·第10版)》叙述深入浅出,涉及面广。主要内容有随机变量、条件概率及条件期望、离散及连续马尔可夫链、指数分布、泊松过程、布朗运动及平稳过程、更新理论及排队论等;也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关随机模拟的内容,给随机系统运行的模拟计算提供了有力的工具。除正文外,《应用随机过程——概率模型导论(第10版:英文版)》有约700道习题,其中带星号的习题还提供了解答。 《应用随机过程:概率模型导论(英文版·第10版)》可作为概率论与统计、计算机科学、保险学、物理学、社会科学、生命科学、管理科学与工程学等专业的随机过程基础课教材。
下载说明
1、应用随机过程是作者罗斯,Sheldon M. Ross创作的原创作品,下载链接均为网友上传的网盘链接!
2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!