欢迎来到相识电子书!

标签:数学

  • 数学分析解题指南

    作者:林源渠,方企勤

    本书是大学生学习“数学分析”课的辅导教材,可与国内通用的《数学分析》教材同步使用,特别适合于作为《数学分析新讲》(北京大学出版社,1991)的配套辅导教材。本书的两位作者在北京大学从事数学分析和高等数学教学工作近40年,具有丰富的教学经验。全书共分7章,内容包括:分析基础,一元函数微分学,一元函数积分学,级数,多元函数微分学,多元函数积分学,典型综合题分析。在每一节中,设有内容提要、典型例题分析,以及供学生自己做的练习题等部分,书末附有答案,对证明题的大部分给出了提示或解答。本书许多题给出了多种多样解法,某些解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出现的睿智给本书增添了不可多得的精彩。本书的另外一大特色是:辅导怎样“答”题的同时,还通过“敲条件,举反倒”等方式引导学生如何“问”问题,就是如何给自己“提问题”。 本书可作为综合大学、理工科大学、高等师范学校各专业大学生学习数学分析的学习辅导书。对新担任数学分析课程教学任务的青年教师,本书是较好的教学参考书;对报考硕士研究生的大学生来说,也是考前复习的良师益友。
  • 微分方程及其应用

    作者:Martin Braun

    Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses.
  • 小波与傅里叶分析基础

    作者:Albert Boggess,Franc

  • 小波十讲

    作者:(美)多布(ingridDaubechi

  • 离散数学及其应用(原书第4版)

    作者:Kenneth H.Rosen

    离散数学及其应用:原书第4版,ISBN:9787111075776,作者:(美)Kenneth H.Rosen著;袁崇义[等]译
  • 组合数学

    作者:布鲁迪

    《组合数学》(原书第4版)侧重于组合数学的概念和思想,包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等,深入浅出地表达了作者对该领域全面和深刻的理解,介绍了历史上源于数学游戏和娱乐的大量实例,其中对Polya计数、Burnside定理等的完美处理使得不熟悉群论的学生也能够读懂。除包含第3版中的内容外,本版又进行了更新,增加了莫比乌斯反演(作为容斥原理的推广)、格路径、Schroder数等内容。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。
  • 托马斯微积分(影印版·第十版)下册

    作者:Finney;Weir; Giordan

    《托马斯微积分》(下第10版影印版)在我国已经加入WT0、经济全球化的今天,为适应当前我国高校各类创新人才培养的需要,大力推进教育部倡导的双语教学,配合教育部实施的“高等学校教学质量-9教学改革工程”和“精品课程”建设的需要,高等教育出版社有计划、大规模地开展了海外优秀数学类系列教材的引进工作。高等教育出版社和Pearson Education,John Wiley&Sons,McGraw-Hill,Thomson Learnin9等国外出版公司进行了广泛接触,经国外出版公司的推荐并在国内专家的协助下,提交弓I进版权总数100余种。收到样书后,我们聘请了国内高校一线教师、专家、学者参与这些原版教材的评介工作,并参考国内相关专业的课程设置和教学实际情况,从中遴选出了这套优秀教材组织出版。
  • 数学模型

    作者:姜启源

    《数学模型(第3版)》第二版出版于1993年,基于10年来从事数学建模教学和组织数学建模竞赛的经验,考虑到计算机技术与数学软件的发展和普及,受到开设数学实验课及国外新版数学建模教材的启示,第三版在大体保持原貌的基础上,作了较大的补充与修改,增加数学规划模型和统计回归模型,及若干模型求解的数值计算、图形演示、灵敏度分析等内容,删节、合并、调整了若干章节,修订原有习题并增设了综合练习。
  • 高等代数简明教程(上册)

    作者:蓝以中

    《高等代数简明教程》(上册)(第2版)共十二章,分上、下两册出版。上册(第一章至第五章)是线性代数的基础教材,内容包括向量空间、矩阵、行列式、线性空间与线性变换、双线性函数与二次型。《高等代数简明教程》(上册)(第2版)每个章节都安排了相当数量的习题作为课外练习或习题课上选用,其中的计算题在书末附有答案,较难的题则有提示。《高等代数简明教程》(上册)(第2版)可作为综合大学、高等师范院校数学系、力学系、应用数学系大学生高等代数课程的教材或教学参考书,对于青年教师、数学工作者《高等代数简明教程》(上册)(第2版)也是很好的教学参考书或学习用书。
  • 基础拓扑学讲义

    作者:尤承业

    《基础拓扑学讲义》是拓扑学的入门教材。内容包括点集拓扑与代数拓扑,重点介绍代数拓扑学中的基本概念、方法和应用。共分八章:拓扑空间的基本概念,紧致性和连通性,商空间与闭曲面,同伦与基本群,复叠空间,单纯同调及其应用,映射度与不动点等。每节配备了适量习题并在书末附有解答与提示。《基础拓扑学讲义》叙述深入浅出,例题丰富,论证严谨,重点突出;强调几何背景,注意培养学生的几何直观能力;方法新颖,特别是关于对径映射的映射度的计算颇具新意。
  • 简明数学词典

    作者:胡国定

    简明数学词典,ISBN:9787030087270,作者:徐书润等编写
  • 代数学引论(第二版)

    作者:聂灵沼,丁石孙

    《代数学引论(第2版)》是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材。《代数学引论(第2版)》是作者根据多年教学经验,在原有讲义基础上经过修改、补充而成的。书中介绍了代数学的基本知识:第一至第七章给出群、环、模、域四个基本的代数结构及其性质;第八章介绍伽罗瓦理论;第九章是多重线性代数初步。各章后配有相当数量的习题。全书相当于一学年课程的教材。《代数学引论(第2版)》取材恰当,论证严谨,文字简洁、流畅。 第二版除进行少量文字修改外,对习题作了一些调整,较难的习题用星号标出,并给以适当的提示。《代数学引论(第2版)》可用作高等学校数学系抽象代数课的教材,也可供其他相关专业的师生参考。
  • 概率统计讲义

    作者:陈家鼎,刘婉如,汪仁官

  • 数学分析习题课讲义(上册)

    作者:谢惠民等编

    《数学分析习题课讲义(上册)》是教育部“国家理科基地创建名牌课程项目”的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。《数学分析习题课讲义(上册)》以编著者们近20年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲解中强调启发式和逐步深入,在习题的选取中致力于对传统内容的更新、补充与层次化。 《数学分析习题课讲义(上册)》分上下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 《数学分析习题课讲义(上册)》可作为高等院校理工科教师和学生在数学分析习题课方面的教材或参考书,也可以作为研究生入学考试和其他人员的数学分析辅导书。
  • 拓扑学

    作者:[美] James R.Munkres

    本书作者在拓扑学领域享有盛誉。 本书分为两个独立的部分;第一部分普通拓扑学,讲述点集拓扑学的内容;前4章作为拓扑学的引论,介绍作为核心题材的集合论、拓扑空间。连通性、紧性以及可数性和分离性公理;后4章是补充题材;第二部分代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆盖空间及其应用。 本书最大的特点在于对理论的清晰阐述和严谨证明,力求让读者能够充分理解。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证,清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
  • 复分析

    作者:阿尔福斯

    本书的诞生还是半个世纪之前的事情,但是,深贯其中的严谨的学术风范以及针对不同时代所做出的切实改进使得它愈久弥新,成为复分析领域历经考验的一本经典教材。本书作者在数学分析领域声乐卓著,多次荣获国际大次,这也是本书始终保持旺盛的生命力的原因之一。本书适合用做数学专业本科高年级学生及研究生教材。
  • 组合数学

    作者:卢开澄

    组合数学,ISBN:9787302045816,作者:卢开澄,卢华明著
  • 代数几何

    作者:哈茨霍恩 (Hartshorne)

    代数几何,ISBN:9787030029706,作者:(美)R.哈茨霍恩(Robin Hartshorne)著;冯克勤等译
  • 曲线与曲面的微分几何

    作者:Manfredo Do Carmo

    《曲线与曲面的微分几何》是曲线和曲面局部微分几何学和整体几何学的一本引论,是大学微分几何课程的经典教材。它的内容和取材均相当丰富,习题充足完整,许多章节知识可以籍习题向下作延伸推广。在叙述方法上与传统方式有如下不同:较广泛地应用了线性代数的基本知识,在一定程度上强调了基本的几何事实,并不陷入方法技巧或机遇性的细节中。