欢迎来到相识电子书!
标签:数学
-
数理经济学的基本方法
本书涵盖如下主要经济分析的内容:静态学(均衡分析)、比较静态学、最优化问题(静态学的一种特例)、动态学和数学规划(最优化的现代发展)。为掌握上述内容,我介绍了如下数学方法:矩阵代数、微积分、微分方程、差分方程和凸集。由于书中介绍了大量宏观、微观经济模型,所以,本书对那些已受过数学训练,但需要一个向导,引导其由数学王国步入经济学殿堂的人来说,也是极有裨益的。基于同样的原因,本书不仅可以作为数学方法的教科书,而且也可以作为学习宏观经济理论、微观经济理论、经济增长与经济发展理论等课程的补充读物。 -
数理逻辑
《数理逻辑(第2版)》适合作为数学、哲学、计算机科学以及其他学科需要学习数理逻辑课程的本科生和研究生的教材。 -
雨林中的欧几里德
一部故事化的数学简史,古根海姆奖得主,最受欢迎的科普读物,连续六十周荣登《纽约时报》科普畅销书榜。 充满洞见、极富启发、富于思辩且饱含幽默,这绝然是一部睿智的作品。——哈佛大学科学史教授,比特·加里森 《雨林中的欧几里德》巧妙而富于创见地揭示了数学的实质与数学精神。——日本广岛市市长,秋叶忠利 约瑟夫开创了一种极具吸引力的写作方式,他在每日的现实生活与奥妙的数学世界之间架起了一座奇妙的桥梁。——哈佛大学数学系主任,约瑟夫·哈里斯 扬弃了复杂的证明和枯燥的专业语言,取而代之的是有趣的故事和丰富的经验,其结果便是智慧、奇妙和令人振奋。——《书业评论》 公元前300年,欧几里德在十三卷羊皮纸上写下了《几何原本》,那时逻辑推理已经相当成熟,然而类似如下的论辩又使得常规的数理逻辑陷入了自相矛盾之中。让一个物体移动任意一段距离,它必须首先到达一半距离处,然后是剩余距离的一半处,如此连续地重复着,物体则永远不得不到达某个剩余距离的一半处,所以,它永远也不可能移动全部的距离…… 怪异的无穷以及诸如此类的有关推理与逻辑的疑问,向数学提出了艰巨的挑战。乍眼看来这些疑问常常令人敬畏,然而在本书中,我们将透过数学证明和数理逻辑的表面形式,来洞见数学之本源——数学思想和逻辑思维的基本模式,并以此来对上述疑问作以解析。正如书中所言:数学好似一座繁茂的雨林,漫步其中我们所感受到的不仅是智慧的伟大,由深邃思想和严密论证而带来的数学之美以及涉步于数学旅程之中所伴随的愉悦更加令人流连。 -
How to Solve It
A perennial bestseller by eminent mathematician G. Polya, "How to Solve It" will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft - indeed, brilliant - instructions on stripping away irrelevancies and going straight to the heart of the problem. In this best-selling classic, George Polya revealed how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams.Generations of readers have relished Polya's deft instructions on stripping away irrelevancies and going straight to the heart of a problem. "How to Solve It" popularized heuristics, the art and science of discovery and invention. It has been in print continuously since 1945 and has been translated into twenty-three different languages. Polya was one of the most influential mathematicians of the twentieth century. He made important contributions to a great variety of mathematical research: from complex analysis to mathematical physics, number theory, probability, geometry, astronomy, and combinatorics. He was also an extraordinary teacher - he taught until he was ninety - and maintained a strong interest in pedagogical matters throughout his long career.In addition to "How to Solve It", he published a two-volume work on the topic of problem solving, "Mathematics of Plausible Reasoning", also with Princeton. Polya is one of the most frequently quoted mathematicians, and the following statements from "How to Solve It" make clear why: "My method to overcome a difficulty is to go around it." "Geometry is the science of correct reasoning on incorrect figures." "In order to solve this differential equation you look at it till a solution occurs to you." -
Introduction To Commutative Algebra
This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization. -
复分析
《复分析》(原书第3版)的诞生已是半个世纪之前的事情,但是,深贯其中的严谨的学术风范以及针对不同时代所做出的切实改进使得它愈久弥新,成为复分析领域历经考验的一本经典教材。《复分析》(原书第3版)作者在数学分析领域声名卓著,多次荣获国际大奖,这也是《复分析》(原书第3版)始终保持旺盛生命力的原因之一。《复分析》(原书第3版)从现代数学的观点介绍复分析的基本知识与常用工具,全书共分为8章,主要包括:复数、复函数、作为映射的解析函数、复积分、级数与乘积展开、共形映射,软件克雷问题、椭圆函数以及全局解析函数,此外,大部分章节后都有练习,便于学生掌握书中内容。 -
西方文化中的数学
《西方文化中的数学》是美国著名数学家、数学教育家、数学史家M·克莱因的一部力作。自1953年在美国出版后,多次再版,深受西方文化界、数学界欢迎,其影响经久不衰。《西方文化中的数学》系统地阐述了各个不同历史时期数学与文学、绘画、哲学、宗教、美学、音乐、人文科学、自然科学等文化领域的内在联系,详细而透彻地说明了数学对西方文化、理性精神、现代人类思想的发展所产生的深刻影响,有力地证明了数学是人类文化的重要组成部分和不可缺少的重要力量。 -
代数
本书由著名代数学家与代数几何学家Michael Artin所著,是作者在代数领域数十年的智慧和经验的结晶。书中既介绍了矩阵运算、群、向量空间、线性算子、对称等较为基本的内容,又介绍了环、模型、域、伽罗瓦理论等较为高深的内容。本书对于提高数学理解能力,增强对代数的兴趣是非常有益处的。此外,本书的可阅读性强,书中的习题也很有针对性,能让读者很快地掌握分析和思考的方法。 作者结合这20年来的教学经历及读者的反馈,对本版进行了全面更新,更强调对称性、线性群、二次数域和格等具体主题。本版的具体更新情况如下: 新增球面、乘积环和因式分解的计算方法等内容,并补充给出一些结论的证明,如交错群是简单的、柯西定理、分裂定理等。 修订了对对应定理、SU2 表示、正交关系等内容的讨论,并把线性变换和因子分解都拆分为两章来介绍。 新增大量习题,并用星号标注出具有挑战性的习题。 本书在麻省理工学院、普林斯顿大学、哥伦比亚大学等著名学府得到了广泛采用,是代数学的经典教材之一。 -
自然哲学的数学原理
《自然哲学的数学原理(全新修订版)》是牛顿科学才华处于巅峰时期所写的旷世巨著。是他“个人智慧的伟大结晶”。这部书,精辟地解答了牛顿之前几个世纪最有才智的人一直想解答却一直无法解答的问题。牛顿不但总结出了力学的基本定律。而且还发现了证明这些定律的数学方法。奠定了数学成为描述宇宙运动的语言的基础。 在《自然哲学的数学原理》之后,人类在自然科学中的伟大成就才层出不穷。但这些成就无一不与这部非凡的著作直接相关。牛顿提供了科学思维体系的样板。 《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。《自然哲学的数学原理》不仅影响自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响,并因此形成了我们今天的“世界图像”。 -
矩阵计算
本书是国际上数值计算方面的权威著作,有“圣经”之称。被美国加州大学、斯坦福大学、华盛顿大学、芝加哥大学、中国科学院研究生院等很多世界知名学府用作相关课程的教材或主要参考书。 本书系统地介绍了矩阵计算的基本理论和方法。书中的许多算法都有现成的软件包实现,每节后还附有习题,并有注释和大量参考文献,非常有助于自学。 -
Algorithms
This text, extensively class-tested over a decade at UC Berkeley and UC San Diego, explains the fundamentals of algorithms in a story line that makes the material enjoyable and easy to digest. Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. -
Convex Optimization
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics. -
陶哲轩实分析
强调严格性和基础性,书中的材料从源头——数系的结构及集合论开始,然后引向分析的基础(极限、级数、连续、微分、Riemann积分等),再进入幂级数、多元微分学以及Fourier分析,最后到达Lebesgue积分,这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录。课程的材料与习题紧密结合,目的是使学生能动地学习课程的材料,并且进行严格的思考和严密的书面表达的实践。 -
朴素集合论
Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic settheoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here。 -
诗魂数学家的沉思
《诗魂数学家的沉思》精选数学史上有重要影响的数学家的代表性论述,包括一些久传不衰、脍炙人口的名篇,专人专集,分批出版,作为基本学术资料,供数学、数学史和数学哲学等领域的学者查考、研读。 -
数学与自然科学之哲学
《数学与自然科学之哲学》原书以德文写作,发表于1926年,反映了20世纪20年代的数学与物理学以及数学基础的大发展与大争论。1949年的英译本,又以6个附录的形式反映了其后20年左右的科学发展,而且论述的范围也超出了物理学与数学,涉及其他学科的若士基本问题。 -
博弈论基础
本书是高级经济学教科书,也是博弈论入门书。其长处在于避免了为研究博弈论而研究博弈论,把重点放在了博弈论在经济学的应用上,因此非常适合于经济学专业人士阅读。
热门标签
下载排行榜
- 1 梦的解析:最佳译本
- 2 李鸿章全传
- 3 淡定的智慧
- 4 心理操控术
- 5 哈佛口才课
- 6 俗世奇人
- 7 日瓦戈医生
- 8 笑死你的逻辑学
- 9 历史老师没教过的历史
- 10 1分钟和陌生人成为朋友