欢迎来到相识电子书!

标签:非线性科学

  • 分形艺术

    作者:刘华杰

    本书以优美的笔调简明介绍了分形概念,从科学与艺术相结合的角度尝试分析了分形图形艺术的意义和前景。更为重要的是,作者详细讲述了制作精美分形的技巧,并给出了大量源程序。作者的用意就是推广普及分形艺术,使更多的读者在最短的时间里掌握必要的技巧,能够亲手制作出更多更美的图形。 第一章 分形故事多 1.1 简单说来 1.2 有人创造了fractal这个词 1.3 “分形”之由来 1.4 语词的魅力 1.5 分形纪事 1.6 球形鸡与分形牛 1.7 标度:人给自然立法 1.8 “模型八”与原子 1.9 作为认知方法和解释工具的分形概念 1.10 分数维数:从拓扑维到度量维 1.11 分形与生成哲学 第二章 分形图形艺术 2.1 艺术的含义 2.2 时代的反驳 2.3 分形作为艺术 2.4 也谈真、善、美 2.5 分形艺术在中国的境遇 2.6 分形艺术图形生成方法与发展前景 2.7 超大分形艺术图形与装饰艺术 2.8 革命:艺术与新几何学 2.9 刚刚开始的话题:信息时代的艺术 第三章 计算机上作图 3.1 数的哲学 3.2 计算机不只是计算 3.3 操作系统与文件 3.4 计算机屏幕坐标 3.5 孟塞尔标色体系及其他 3.6 色彩与RGB值 3.7 CMYK分色片 3.8 图形文件的格式 3.9 图形初始化 3.10 微机图形功能一瞥 第四章 传统分形:从反例到主角 4.1 从巨人丢勒谈起 4.2 康托尔集合 4.3 皮亚诺曲线与希尔伯特曲线 4.4 柯赫曲线 4.5 谢尔宾斯基地毯 第五章 林氏系统与迭代函数系统 5.1 林氏系统 5.2 实例与伪码 5.3 供实验的林氏系统数据表 5.4 迭代函数系统方法 5.5 扩散置限凝聚模型 第六章 复平面上的迭代 6.1 复数四则运算与迭代 6.2 芒德勃罗集 6.3 朱丽亚集 6.4 广义芒德勃罗集和朱丽亚集 6.5 高维芒德勃罗集与朱丽亚集 6.6 牛顿法求根 第七章 对称图案与平面铺砌 7.1 对称的奥秘 7.2 关注对称性的世纪 7.3 周期网和非周期网 7.4 对称斑图的等能面画法 7.5 平面铺砌的林氏系统生成 第八章 实映射分形图 8.1 一维逻辑斯蒂映射 8.2 里雅普诺夫指数 8.3 双浑沌映射 8.4 标准映射 8.5 埃农保面积映射 8.6 国王映射 8.7 三翅鹰映射 第九章 微分方程系统 9.1 描述大自然的模型 9.2 龙格-库塔积分法 9.3 洛仑兹浑沌 9.4 若斯勒浑沌 9.5 布鲁塞尔子 第十章 软件Fractint 19.5简介 10.1 从网上获取最新版本的Fractint软件 10.2 创建Fractint软件说明书 10.3 操作举例 10.4 调色板编制与实时编辑 10.5 Fractint 19.5全部源代码 尾声:分形路漫漫 主要参考文献与彩页目录 后记 索引