欢迎来到相识电子书!

标签:数据挖掘

  • 数据挖掘概念与技术

    作者:(加)Jiawei Han;Michel

    《数据挖掘概念与技术(原书第2版)》全面地讲述数据挖掘领域的重要知识和技术创新。在第1版内容相当全面的基础上,第2版展示了该领域的最新研究成果,例如挖掘流、时序和序列数据以及挖掘时间空间、多媒体、文本和Web数据。本书可作为数据挖掘和知识发现领域的教师、研究人员和开发人员的一本必读书。 《数据挖掘概念与技术(原书第2版)》第1版曾是受读者欢迎的数据挖掘专著,是一本可读性极佳的教材。第2版充实了数据挖掘领域研究新进展的题材,增加了讲述最新的数据挖掘方法的若干章节。本书适合作为高等院校计算机及相关专业高年级本科生的选修课教材,特别适合作为研究生的专业课教材。 海报:
  • 业务建模与数据挖掘

    作者:[美] Dorian Pyle;杨冬青

  • 大数据营销

    作者:(美)麦德奇,保罗B. 布朗

    今天,我们的一切行为都在产生数据,而且数量巨大。每次浏览网页、搜索或者用智能手机上网,几乎都会增加数十亿字节之多的数据,而且这个增量还在扩大。如此庞大的数据可以帮助我们更好地理解并预测客户的行为。 最大的好消息是,我们再也无须精通数学或者统计学、甚至无须依赖昂贵的建模软件来分析客户。数据分析领域正在掀起一场革命。仿佛一夜之间,挖掘这些“大数据”的方法与工具变得格外简单,价格也不再高高在上。 来自业内翘楚——奥美互动的董事总经理,在这本书中告诉你怎样利用数据辨认出利润最高的客户,并用最有效的方法接触这些客户,从而增加他们的购买力。 预计现有客户与潜在客户未来的价值。 寻找客户,包括现实和互联网。 判断哪些客户是因为需求购买,哪些客户是因为广告购买,哪些客户是因为价格购买,哪些客户是因为口碑购买。 优化营销配置,使之尽可能带来最高的回报。 以最新的技术优化销售和营销。 本书适合那些希望利用数据促进企业发展、提升利润的读者—— 力求让所有广告费用得到最高投资回报的营销人员 迫切希望企业更快成长的企业主 为终端客户服务的研究机构与产品开发商 负责提高企业净收入的财务人员 寻求反馈的广告创意策划 ……
  • R语言实战

    作者:卡巴科弗 (Robert I.Kabac

    数据时代已经到来,但数据分析、数据挖掘人才却十分短缺。由于“大数据”对每个领域的决定性影响, 相对于经验和直觉,在商业、经济及其他领域中基于数据和分析去发现问题并作出科学、客观的决策越来越重要。开源软件R是世界上最流行的数据分析、统计计算及制图语言,几乎能够完成任何数据处理任务,可安装并运行于所有主流平台,为我们提供了成千上万的专业模块和实用工具,是从大数据中获取有用信息的绝佳工具。  本书从解决实际问题入手,尽量跳脱统计学的理论阐述来讨论R语言及其应用,讲解清晰透澈,极具实用性。作者不仅高度概括了R语言的强大功能、展示了各种实用的统计示例,而且对于难以用传统方法分析的凌乱、不完整和非正态的数据也给出了完备的处理方法。通读本书,你将全面掌握使用R语言进行数据分析、数据挖掘的技巧,并领略大量探索和展示数据的图形功能,从而更加高效地进行分析与沟通。想要成为倍受高科技企业追捧的、炙手可热的数据分析师吗?想要科学分析数据并正确决策吗?不妨从本书开始,挑战大数据,用R开始炫酷的数据统计与分析吧!  本书内容:  R安装与操作 数据导入/导出及格式化双变量关系的描述性分析回归分析 模型适用性的评价方法以及结果的可视化 用图形实现变量关系的可视化 在给定置信度的前提下确定样本量 高级统计分析方法和高级绘图
  • 复杂数据统计方法

    作者:吴喜之

    《复杂数据统计方法——基于r的应用》用自由的日软件分析30多个可以从国外网站下载的真实数据,包括横截面数据、纵向数据和时间序列数据,通过这些数据介绍了几乎所有经典方法及最新的机器学习方法。 《复杂数据统计方法——基于r的应用》特点:(1)以数据为导向;(2)介绍最新的方法(附有传统方法回顾);(3)提供r软件入门及全部例子计算的日代码及数据的网址;(4)各章独立。 《复杂数据统计方法——基于r的应用》的读者对象包括统计学、应用统计学、经济学、数学、应用数学、精算、环境、计量经济学、生物医学等专业的本科、硕士及博士生,各领域的教师和实际工作者。
  • 流量的秘密

    作者:Brian Clifton

    你知道如何通过量化网站的各类数据来制定相应的营销方案吗?你知道有些看似不可以量化的网站信息也是可以量化的吗?哪种市场营销活动最有成效?如何量化这些效果?如何留住访客?如何提高自己网站的影响力和竞争力?《流量的秘密——Google Analytics网站分析与优化技巧(第2版)》将运用Google Analytics分析工具,帮你完美解决这些问题,教你获取真正有价值的信息。   《流量的秘密——Google Analytics网站分析与优化技巧(第2版)》讲述了安装和部署Google Analytics最实用的技术,将最大化网站潜力所需的知识奉献给读者。通过了解网站的访客,你可以如手术刀般精准地调整网页内容和营销预算,以期获得更佳的投资回报率。   《流量的秘密——Google Analytics网站分析与优化技巧(第2版)》适合市场营销人员、网站管理员、网站决策人员,还有所有对网站营销有商业兴趣的人。
  • 模式识别

    作者:(希)Sergios Theodorid

    本书全面阐述了模式识别的基础理论、最新方法以及各种应用。模式识别是信息科学和人工智能的重要组成部分,主要应用领域有图像分析、光学字符识别、信道均衡、语言识别和音频分类等。本书在完美地结合当前的理论与实践的基础上,讨论了贝叶斯分类、贝叶斯网络、线性和非线性分类器设计、上下文相关分类、特征生成、特征选取技术、学习理论的基本概念以及聚类概念与算法。与前一版相比,增加了大数据集和高维数据相关的最新算法,这些算法适用于Web挖掘和生物信息等应用;提供了最新的分类器和鲁棒回归的核方法;分类器组合技术,包括Boosting方法。新增一些热点问题,如非线性降维、非负矩阵因数分解、关联性反馈、鲁棒回归、半监督学习、谱聚类和聚类组合技术。每章均提供有习题与练习,用MATLAB求解问题,给出一些例题的多种求解方法;且支持网站上提供有习题解答,以便于读者增加实际经验。 本书可作为高等院校自动化、计算机、电子和通信等专业研究生和高年级本科生的教材,也可作为计算机信息处理、自动控制等相关领域的工程技术人员的参考用书。
  • 流量的秘密

    作者:(英)Brian Clifton

    你对自己的网站有足够的了解吗?你知道自己网站的真实影响力和竞争力吗?你在想尽办法留住你的访客吗?《流量的秘密:Google Analytics网站分析与优化技巧》将运用最新的网络计量学方法,教你获取真正有价值的信息。 哪种市场营销活动最有成效?如何量化这些效果?应该从哪些衡量指标进行追踪?《流量的秘密:Google Analytics网站分析与优化技巧》介绍的Google Analytics分析工具,将帮你完美解决这些问题,让你真正量化网站的成效。 《流量的秘密:Google Analytics网站分析与优化技巧》讲述了安装和配置Google Analytics最实用的技术,目标很明确:将最大化网站潜力所需要的知道奉献给读者。通过了解网站的访客,你可以如手术刀般精准地调整网页内容和营销预算,以期获得更佳的投资回报率。 《流量的秘密:Google Analytics网站分析与优化技巧》适合市场营销人员、网站管理员、网站决策人员,还有所有对网站营销有商业兴趣的人。
  • 大数据时代的历史机遇——产业变革与数据科学

    作者:赵国栋,易欢欢,糜万军,鄂维南

    大数据正以前所未有的速度,颠覆人们探索世界的方法、驱动产业间的融合与分立。本书力图系统、全面的阐述大数据在社会、经济、科学研究等方方面面的影响,或许可以帮助大家澄清一些认知误区,有助于大数据在各行各业落地生根。全书分为三大部分,第一部分重点讲述大数据时代产业发展的三大趋势以及驱动产业融合、升级、转型的根本因素,并给出践行大数据的最佳范式。第二部分首次完整 阐述“数据科学”的基础性价值,论述数据科学对科学研究、社会研究、产业发展的影响,并提出数据科学的教育体系。第三部分全景式的介绍重点国家、经济体、 新兴企业在大数据领域取得的进展,展示一幅真实的大数据图景,把判断留给读者,看谁拥有未来! 大数据是“在多样的或者大量的数据中快速获取信息的能力”。 大数据是一种思维方式,必须融入到企业的每一个毛细血管中。大数据时代已经到来,正在引发一场革命! 大数据正以前所未有的速度颠覆人们探索世界的方法,引起社会、经济、学术、科研、国防、军事等领域的深刻变革。 数据成为资产、产业垂直整合、泛互联网化是大数据时代的三大发展趋势。 数据资产成为和土地、资本、人力并驾齐驱的关键生产要素。围绕数据资产可以演绎跌宕起伏的产业大戏。 数据科学应运而生并将逐渐达到与自然科学分庭抗礼的地位。数据科学既可以推动数学、计算机科学、统计学、天体信息学、生物信息学、计算社会学等学科的发展,又能够助力产业界升级转型。
  • An Introduction to Statistical Learning

    作者:Gareth James,Daniela

    An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
  • 大数据日知录

    作者:张俊林

    大数据是当前最为流行的热点概念之一,其已由技术名词衍生到对很多行业产生颠覆性影响的社会现象,作为最明确的技术发展趋势之一,基于大数据的各种新型产品必将会对每个人的日常生活产生日益重要的影响。 《大数据日知录:架构与算法》从架构与算法角度全面梳理了大数据存储与处理的相关技术。大数据技术具有涉及的知识点异常众多且正处于快速演进发展过程中等特点,其技术点包括底层的硬件体系结构、相关的基础理论、大规模数据存储系统、分布式架构设计、各种不同应用场景下的差异化系统设计思路、机器学习与数据挖掘并行算法以及层出不穷的新架构、新系统等。《大数据日知录:架构与算法》对众多纷繁芜杂的相关技术文献和系统进行了择优汰劣并系统性地对相关知识分门别类地进行整理和介绍,将大数据相关技术分为大数据基础理论、大数据系统体系结构、大数据存储,以及包含批处理、流式计算、交互式数据分析、图数据库、并行机器学习的架构与算法以及增量计算等技术分支在内的大数据处理等几个大的方向。通过这种体系化的知识梳理与讲解,相信对于读者整体和系统地了解、吸收和掌握相关的优秀技术有极大的帮助与促进作用。 《大数据日知录:架构与算法》的读者对象包括对NoSQL 系统及大数据处理感兴趣的所有技术人员,以及有志于投身到大数据处理方向从事架构师、算法工程师、数据科学家等相关职业的在校本科生及研究生。
  • Python自然语言处理

    作者:(美)Steven Bird Ew

    自然语言处理(natural language processing,nlp)是计算机科学领域与人工智能领域中的一个重要方向。它研究能够实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及所有用计算机对自然语言进行的操作。 《python自然语言处理》是自然语言处理领域的一本实用入门指南,旨在帮助读者学习如何编写程序来分析书面语言。本书基于python编程语言以及一个名为nltk的自然语言工具包的开源库;但并不要求读者有python编程的经验。全书共11章,按照难易程度顺序编排。第1章到3章介绍了语言处理的基础,讲述如何使用小的python程序分析感兴趣的文本信息。第4章讨论结构化程序设计,以巩固前面几章中介绍的编程要点。第5章到第7章介绍语言处理的基本原理,包括标注、分类和信息提取等。第8章到第10章介绍了句子解析、句法结构识别和句意表达方法。第11章介绍了如何有效管理语言数据。后记部分简要讨论了nlp领域的过去和未来。 《python自然语言处理》的实践性很强,包括上百个实际可用的例子和分级练习。本书可供读者用于自学,也可以作为自然语言处理或计算语言学课程的教科书,或是人工智能、文本挖掘、语料库语言学等课程的补充读物。
  • 数据挖掘导论

    作者:Pang-Ning Tan,Michae

    本书全面介绍了数据挖掘,涵盖了五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都有两章。前一章涵盖基本概念、代表性算法和评估技术,而后一章讨论高级概念和算法。这样读者在透彻地理解数据挖掘的基础的同时,还能够了解更多重要的高级主题。 本书是明尼苏达大学和密歇根州立大学数据挖掘课程的教材,由于独具特色,正式出版之前就已经被斯坦福大学、得克萨斯大学奥斯汀分校等众多名校采用。 本书特色  与许多其他同类图书不同,本书将重点放在如何用数据挖掘知识解决各种实际问题。  只要求具备很少的预备知识——不需要数据库背景,只需要很少的统计学或数学背景知识。  书中包含大量的图表、综合示例和丰富的习题,并且使用示例、关键算法的简洁描述和习题,尽可能直接地聚焦于数据挖掘的主要概念。  教辅内容极为丰富,包括课程幻灯片、学生课题建议、数据挖掘资源(如数据挖掘算法和数据集)、联机指南(使用实际的数据集和数据分析软件,为本书介绍的部分数据挖掘技术提供例子讲解)。  向采用本书作为教材的教师提供习题解答。
  • Music Recommendation and Discovery

    作者:Òscar Celma

    With so much more music available these days, traditional ways of finding music have diminished. Today radio shows are often programmed by large corporations that create playlists drawn from a limited pool of tracks. Similarly, record stores have been replaced by big-box retailers that have ever-shrinking music departments. Instead of relying on DJs, record-store clerks or their friends for music recommendations, listeners are turning to machines to guide them to new music. In this book, Òscar Celma guides us through the world of automatic music recommendation. He describes how music recommenders work, explores some of the limitations seen in current recommenders, offers techniques for evaluating the effectiveness of music recommendations and demonstrates how to build effective recommenders by offering two real-world recommender examples. He emphasizes the user's perceived quality, rather than the system's predictive accuracy when providing recommendations, thus allowing users to discover new music by exploiting the long tail of popularity and promoting novel and relevant material ("non-obvious recommendations"). In order to reach out into the long tail, he needs to weave techniques from complex network analysis and music information retrieval. Aimed at final-year-undergraduate and graduate students working on recommender systems or music information retrieval, this book presents the state of the art of all the different techniques used to recommend items, focusing on the music domain as the underlying application.
  • Music Data Mining

    作者:Edited by Tao Li, Mi

    The research area of music information retrieval has gradually evolved to address the challenges of effectively accessing and interacting large collections of music and associated data, such as styles, artists, lyrics, and reviews. Bringing together an interdisciplinary array of top researchers, Music Data Mining presents a variety of approaches to successfully employ data mining techniques for the purpose of music processing. The book first covers music data mining tasks and algorithms and audio feature extraction, providing a framework for subsequent chapters. With a focus on data classification, it then describes a computational approach inspired by human auditory perception and examines instrument recognition, the effects of music on moods and emotions, and the connections between power laws and music aesthetics. Given the importance of social aspects in understanding music, the text addresses the use of the Web and peer-to-peer networks for both music data mining and evaluating music mining tasks and algorithms. It also discusses indexing with tags and explains how data can be collected using online human computation games. The final chapters offer a balanced exploration of hit song science as well as a look at symbolic musicology and data mining. The multifaceted nature of music information often requires algorithms and systems using sophisticated signal processing and machine learning techniques to better extract useful information. An excellent introduction to the field, this volume presents state-of-the-art techniques in music data mining and information retrieval to create novel ways of interacting with large music collections.
  • 数据挖掘导论

    作者:Pang-Ning Tan, Micha

    本书全面介绍了数据挖掘的理论和方法,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。本书涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。此外,书中还提供了大量示例、图表和习题。 本书适合作为相关专业高年级本科生和研究生数据挖掘课程的教材,同时也可作为数据挖掘研究和应用开发人员的参考书。
  • 分析的艺术

    作者:陈功

    长期以来中国的信息科学与信息实践存在严重的脱节问题,虽然信息分析与情报研究广泛应用于各个领域的历史相当久远,但信息分析始终并未形成独立的学科体系,因此难以进一步的发展,并对中国未来的竞争实践构成了现实威胁。 为了使信息分析和情报研究能够有效地面向未来,作者结合日常分析工作,通过历时一年半的研究和写作,提出了信息反射论、思维训练、知识能力、信息链和策略研究等一连串的基础理论概念,引入了必要的方法体系和基本原则,批判性地挑战了长期以来信息科学的传统观点,并在此基础上,首次明确提出并构筑形成了信息分析学的基本概念和理论基础。 应该说,这是一部来自于专业研究人员的著作,是来自于现实的作品,非常务实且具有可操作性。
  • 数据挖掘

    作者:Mehmed Kantardzic,Ka

    本书讨论了数据挖掘的原理,接着描述了一个具有代表性的艺术级的方法和算法。这些方法和算法起源于不同的学科,如统计学、机器学习、计算机图形学、数据库等。本书还提供了详细的算法,而且这些算法都带有必要的解释和图形示例。 本书提供了一个指南:在面对一个待挖掘的数据集(以及它们的伴随数据集)时,怎样和何时从成百上千种软件工具中选择特定的一种。本书允许分析人员用书中提供的方法和技术来创建和执行他们自己的
  • 商业数据挖掘导论

    作者:(美)戴维.奥尔森,.(中)石勇

    本书综合商业专业知识和数据挖掘模型开发于一体,系统地介绍了数据挖掘商业环境、数据挖掘技术及其在商业中的应用。在注重对数据挖掘技术讲解的同时,强调了数据挖掘在商业决策领域中的应用,弥补了大多数数据仓库技术类书籍商业应用不足的缺点。本书主线清晰,案例丰富,语言精练。 本书既可以作为商业专业本科生、研究生的教材,也可以在MBA、EMBA 教学和企业培训中使用。
  • Introduction to Data Mining

    作者:Pang-Ning Tan,Michae

    Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms. Quotes This book provides a comprehensive coverage of important data mining techniques. Numerous examples are provided to lucidly illustrate the key concepts. -Sanjay Ranka, University of Florida In my opinion this is currently the best data mining text book on the market. I like the comprehensive coverage which spans all major data mining techniques including classification, clustering, and pattern mining (association rules). -Mohammed Zaki, Rensselaer Polytechnic Institute