欢迎来到相识电子书!
标签:Statistics
-
数据之美
这是一本教我们如何制作完美可视化图表,挖掘大数据背后意义的书。作者认为,可视化是一种媒介,向我们揭示了数据背后的故事。他循序渐进、深入浅出地道出了数据可视化的步骤和思想。本书让我们知道了如何理解数据可视化,如何探索数据的模式和寻找数据间的关联,如何选择适合自己的数据和目的的可视化方式,有哪些我们可以利用的可视化工具以及这些工具各有怎样的利弊。 作者给我们提供了丰富的可视化信息以及查看、探索数据的多元视角,丰富了我们对于数据、对于可视化的认知。对那些对设计和分析过程感兴趣的人,本书无疑就是一本必读书。 -
复杂数据统计方法
《复杂数据统计方法——基于r的应用》用自由的日软件分析30多个可以从国外网站下载的真实数据,包括横截面数据、纵向数据和时间序列数据,通过这些数据介绍了几乎所有经典方法及最新的机器学习方法。 《复杂数据统计方法——基于r的应用》特点:(1)以数据为导向;(2)介绍最新的方法(附有传统方法回顾);(3)提供r软件入门及全部例子计算的日代码及数据的网址;(4)各章独立。 《复杂数据统计方法——基于r的应用》的读者对象包括统计学、应用统计学、经济学、数学、应用数学、精算、环境、计量经济学、生物医学等专业的本科、硕士及博士生,各领域的教师和实际工作者。 -
An Introduction to Statistical Learning
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. -
Statistics Hacks
Want to calculate the probability that an event will happen? Be able to spot fake data? Prove beyond doubt whether one thing causes another? Or learn to be a better gambler? You can do that and much more with 75 practical and fun hacks packed into Statistics Hacks. These cool tips, tricks, and mind-boggling solutions from the world of statistics, measurement, and research methods will not only amaze and entertain you, but will give you an advantage in several real-world situations-including business. This book is ideal for anyone who likes puzzles, brainteasers, games, gambling, magic tricks, and those who want to apply math and science to everyday circumstances. Several hacks in the first chapter alone-such as the "central limit theorem,", which allows you to know everything by knowing just a little-serve as sound approaches for marketing and other business objectives. Using the tools of inferential statistics, you can understand the way probability works, discover relationships, predict events with uncanny accuracy, and even make a little money with a well-placed wager here and there. Statistics Hacks presents useful techniques from statistics, educational and psychological measurement, and experimental research to help you solve a variety of problems in business, games, and life. You'll learn how to: * Play smart when you play Texas Hold 'Em, blackjack, roulette, dice games, or even the lottery * Design your own winnable bar bets to make money and amaze your friends * Predict the outcomes of baseball games, know when to "go for two" in football, and anticipate the winners of other sporting events with surprising accuracy * Demystify amazing coincidences and distinguish the truly random from the only seemingly random--even keep your iPod's "random" shuffle honest * Spot fraudulent data, detect plagiarism, and break codes * How to isolate the effects of observation on the thing observed Whether you're a statistics enthusiast who does calculations in your sleep or a civilian who is entertained by clever solutions to interesting problems, Statistics Hacks has tools to give you an edge over the world's slim odds. -
外语教学研究中的定量数据分析
《外语教学研究中的定量数据分析》是一本系统介绍外语教学研究特点、统计分析基础以及参数和非参数检验方法在外语教学研究中应用的专著。该书由以下三大部分十四章组成:1)外语教学研究基础,该部分主要介绍外语教学研究和统计学基本概念;2)定量数据分析的准备,该部分以实例详述了如何利用SPSS统计软件进行数据的准备工作、问卷的项目分析,以及效度和信度分析;3)定量数据的统计分析,该部分用实例讨论了描述统计分析方法、数据考察、假设检验,以及参数和非参数检验方法在外语教学研究中的运用。外语教学研究中的定量数据分析为秦晓晴著。 -
Contemporary Bayesian Econometrics And Statistics
Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy. -
Against the Gods
在线阅读本书 Book Description Human existence is based upon risk. This text charts the adventures of a group of thinkers who embarked on a voyage of intellectual discovery, transforming primeval superstition into the powerful tools of risk control employed today. Amazon.com With the stock market breaking records almost daily, leaving longtime market analysts shaking their heads and revising their forecasts, a study of the concept of risk seems quite timely. Peter Bernstein has written a comprehensive history of man's efforts to understand risk and probability, beginning with early gamblers in ancient Greece, continuing through the 17th-century French mathematicians Pascal and Fermat and up to modern chaos theory. Along the way he demonstrates that understanding risk underlies everything from game theory to bridge-building to winemaking. From Publishers Weekly Risk management, which assumes that future risks can be understood, measured and to some extent predicted, is the focus of this solid, thoroughgoing history. Probability theory, pioneered by 17th-century French mathematicians Blaise Pascal and Pierre de Fermat, has made possible the design of great bridges, electric power utilities and insurance policies. The statistical sampling methods invented by dour Swiss scientist Jacob Bernoulli undergird diverse activities such as the testing of new drugs, stock-picking and wine tasting. Bernstein (Capital Ideas) animates his narrative with a colorful cast of risk-analyzers, including gambling addict Girolamo Cardano, 16th-century Italian physician to the Pope; and John Maynard Keynes, whose concerns over economic uncertainty compelled him to recommend an active, interventionist role for government. Bernstein also traces the development of business forecasting, game theory, insurance and derivatives, and surveys recent advances in risk forecasting made possible through chaos theory and by the development of neural networks. From Library Journal For several centuries, mathematics has been the language of the exact sciences. Only in the 20th century has mathematics become predominant in other fields, particularly economics and finance. In this book, Bernstein (Capital Ideas: The Improbable Origins of Modern Wall Street, LJ 12/91), head of an economic consulting firm, traces the development of probability theory from its beginnings in analyzing games of chance, through its application to statistical theory and insurance, up to its present use in developing investment strategies to control risk. He includes excellent sections on portfolio analysis and on investments in derivatives. Bernstein clearly describes the people, their work, and the events that have revolutionized the thinking on Wall Street. A worthwhile acquisition for business and math collections. Harold D. Shane, Baruch Coll., CUNY From Booklist Bernstein's lively history chronicles a profound transformation in attitudes about the future. How one's fate changed from depending less on capricious outcomes and more on predictable ones forms the backbone of the narrative. His central characters are mathematicians who began pondering the statistics of gambling, or gamblers pondering the risks of gambling: about one sixteenth-century polymath, Girolamo Cardano, Bernstein writes that his "credentials as a gambling addict alone would justify his appearance in the history of risk," and that comment is typical of Bernstein's engaging presentation. Amid his recounting of the insights into probability from Pascal to Keynes, he touches on an array of modern fields in which risk analysis is crucial--insurance, commodities futures, stock markets, and that old standard, gambling. This cornucopia of biographical sketches, mathematical examples, and reflections on the nature of human expectations about the future faces little risk of idling in libraries; patrons of the business section might be keenest to read it. Gilbert Taylor From AudioFile Jesse Boggs honed his expressive, laid-back vocal style narrating his own award-winning documentaries. Here, as reader and abridger, he goes a long way to clarify Bernstein's convoluted theory of risk management. His careful phrasing also brings into high relief the sweeping generalizations and questionable axioms that give pause to the analytic listener. Only in this careful frame of mind can one separate wheat from chaff and learn whatever this book has to teach. Y.R. The Washington Post Book World, September 20, 1998 AGAINST THE GODS appeared in the "Washington Is Also Reading..." section of The Washington Post Book World. The book is described as, "A comprehensive history of man's efforts to understand risk and probability, from ancient gamblers in Greece to modern chaos theory." Book Dimension length: (cm)22.7 width:(cm)15.2 -
Large-Scale Inference
We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples. -
R in Action
The ability to interpret and act on the massive amounts of information locked in web and enterprise systems is critical to success in the modern business economy. R, a free software environment for statistical computing and graphics, is a comprehensive package that empowers developers and analysts to capture, process, and respond intelligently to statistical information. R in Action is the first book to present both the R system and the use cases that make it such a compelling package for business developers. The book begins by introducing the R language, and then moves on to various examples illustrating R's features. Coverage includes data mining methodologies, approaches to messy data, R's extensive graphical environment, useful add-on modules, and how to interface R with other software platforms and data management systems. -
Statistics for Business and Economics
Discover how the most trusted approach to statistics today is Simply Powerful with the latest market-leading text from respected authors Anderson/Sweeney/Williams. STATISTICS FOR BUSINESS AND ECONOMICS, 11e introduces sound statistical methodology within a strong applications setting. The authors clearly demonstrate how statistical results provide insights into business decisions and present solutions to contemporary business problems. New cases and more than 350 real business examples and memorable exercises, 150 of which are new in this edition, present the latest statistical data and business information. With this book's comprehensive coverage and unwavering accuracy, you select the topics best for your course, including thorough coverage of the latest versions of MiniTab 15 and Excel 2007, along with StatTools and other leading Excel 2007 statistical add-ins within chapter appendices. Author-written support materials and CengageNOW online course management system provides time-saving, complete support to ensure student understanding. Choose Anderson/Sweeney/Williams' STATISTICS FOR BUSINESS AND ECONOMICS, 11e for the Simply Powerful statistical solution you need for your course. -
Statistical Analysis with R
This is a practical, step by step guide that will help you to quickly become proficient in the data analysis using R. The book is packed with clear examples, screenshots, and code to carry on your data analysis without any hurdle. If you are a data analyst, business or information technology professional, student, educator, researcher, or anyone else who wants to learn to analyze the data effectively then this book is for you. No prior experience with R is necessary. Knowledge of other programming languages, software packages, or statistics may be helpful, but is not required. -
Introduction to Scientific Programming and Simulation Using R
Known for its versatility, the free programming language R is widely used for statistical computing and graphics, but is also a fully functional programming language well suited to scientific programming. An Introduction to Scientific Programming and Simulation Using R teaches the skills needed to perform scientific programming while also introducing stochastic modelling. Stochastic modelling in particular, and mathematical modelling in general, are intimately linked to scientific programming because the numerical techniques of scientific programming enable the practical application of mathematical models to real-world problems. Following a natural progression that assumes no prior knowledge of programming or probability, the book is organised into four main sections: * Programming In R starts with how to obtain and install R (for Windows, MacOS, and Unix platforms), then tackles basic calculations and program flow, before progressing to function based programming, data structures, graphics, and object-oriented code * A Primer on Numerical Mathematics introduces concepts of numerical accuracy and program efficiency in the context of root-finding, integration, and optimization * A Self-contained Introduction to Probability Theory takes readers as far as the Weak Law of Large Numbers and the Central Limit Theorem, equipping them for point and interval estimation * Simulation teaches how to generate univariate random variables, do Monte-Carlo integration, and variance reduction techniques In the last section, stochastic modelling is introduced using extensive case studies on epidemics, inventory management, and plant dispersal. A tried and tested pedagogic approach is employed throughout, with numerous examples, exercises, and a suite of practice projects. Unlike most guides to R, this volume is not about the application of statistical techniques, but rather shows how to turn algorithms into code. It is for those who want to make tools, not just use them. -
Time Series Analysis
Time Series Analysis With Applications in R, Second Edition, presents an accessible approach to understanding time series models and their applications. Although the emphasis is on time domain ARIMA models and their analysis, the new edition devotes two chapters to the frequency domain and three to time series regression models, models for heteroscedasticity, and threshold models. All of the ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment. The tables and graphical displays are accompanied by the R commands used to produce them. An extensive R package, TSA, which contains many new or revised R functions and all of the data used in the book, accompanies the written text. Script files of R commands for each chapter are available for download. There is also an extensive appendix in the book that leads the reader through the use of R commands and the new R package to carry out the analyses. -
Head First Data Analysis
Today, interpreting data is a critical decision-making factor for businesses and organizations. If your job requires you to manage and analyze all kinds of data, turn to "Head First Data Analysis", where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in "Head First Data Analysis" is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to: determine which data sources to use for collecting information; assess data quality and distinguish signal from noise; build basic data models to illuminate patterns, and assimilate new information into the models; cope with ambiguous information; design experiments to test hypotheses and draw conclusions; use segmentation to organize your data within discrete market groups; visualize data distributions to reveal new relationships and persuade others; predict the future with sampling and probability models; clean your data to make it useful; and, communicate the results of your analysis to your audience. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, "Head First Data Analysis" uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep. -
The Bootstrap and Edgeworth Expansion
This monograph addresses two quite different topics, each being able to shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. The first two chapters deal with the bootstrap and Edgeworth expansion respectively, while chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properties of the bootstrap. The book is aimed at graduate level for those with some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter such that mathematically able readers without knowledge of the rigorous theory of probability will have no trouble understanding most of the book. -
Bayesian Data Analysis, Third Edition
This third edition of a classic textbook presents a comprehensive introduction to Bayesian data analysis. Written for students and researchers alike, the text is written in an easily accessible manner with chapters that contain many exercises as well as detailed worked examples taken from various disciplines. This third edition provides two new chapters on Bayesian nonparametrics and covers computation systems BUGS and R. It also offers enhanced computing advice. The book's website includes solutions to the problems, data sets, software advice, and other ancillary material. -
Introduction to Nonparametric Estimation
This is a concise text developed from lecture notes and ready to be used for a course on the graduate level. The main idea is to introduce the fundamental concepts of the theory while maintaining the exposition suitable for a first approach in the field. Therefore, the results are not always given in the most general form but rather under assumptions that lead to shorter or more elegant proofs. The book has three chapters. Chapter 1 presents basic nonparametric regression and density estimators and analyzes their properties. Chapter 2 is devoted to a detailed treatment of minimax lower bounds. Chapter 3 develops more advanced topics: Pinsker's theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity. This book will be useful for researchers and grad students interested in theoretical aspects of smoothing techniques. Many important and useful results on optimal and adaptive estimation are provided. As one of the leading mathematical statisticians working in nonparametrics, the author is an authority on the subject. -
A Beginner's Guide to R
Based on their extensive experience with teaching R and statistics to applied scientists, the authors provide a beginner's guide to R. To avoid the difficulty of teaching R and statistics at the same time, statistical methods are kept to a minimum. The text covers how to download and install R, import and manage data, elementary plotting, an introduction to functions, advanced plotting, and common beginner mistakes. This book contains everything you need to know to get started with R. -
ggplot2
This book describes ggplot2, a new data visualization package for R that uses the insights from Leland Wilkison''s Grammar of Graphics to create a powerful and flexible system for creating data graphics. With ggplot2, it''s easy to: * produce handsome, publication-quality plots, with automatic legends created from the plot specification * superpose multiple layers (points, lines, maps, tiles, box plots to name a few) from different data sources, with automatically adjusted common scales * add customisable smoothers that use the powerful modelling capabilities of R, such as loess, linear models, generalised additive models and robust regression * save any ggplot2 plot (or part thereof) for later modification or reuse * create custom themes that capture in-house or journal style requirements, and that can easily be applied to multiple plots * approach your graph from a visual perspective, thinking about how each component of the data is represented on the final plot. This book will be useful to everyone who has struggled with displaying their data in an informative and attractive way. You will need some basic knowledge of R (i.e. you should be able to get your data into R), but ggplot2 is a mini-language specifically tailored for producing graphics, and you''ll learn everything you need in the book. After reading this book you''ll be able to produce graphics customized precisely for your problems, and you''ll find it easy to get graphics out of your head and on to the screen or page.
热门标签
下载排行榜
- 1 梦的解析:最佳译本
- 2 李鸿章全传
- 3 淡定的智慧
- 4 心理操控术
- 5 哈佛口才课
- 6 俗世奇人
- 7 日瓦戈医生
- 8 笑死你的逻辑学
- 9 历史老师没教过的历史
- 10 1分钟和陌生人成为朋友