欢迎来到相识电子书!

标签:数学史

  • 数学符号史

    作者:徐品方、张红

    数学符号是数学文献中用以表示数学概念、数学关系等的记号。本书研究了常见的200余个符号的来龙去脉,着重探讨了常用的100多个符号的产生、发展历史。作者从卷帙浩繁的古算史书中进行考证,以史为据,自成体系,可读性强。 本书可供大、中学师生教学参考、课外阅读,也可供数学史、文化史爱好者阅读。
  • 数学恩仇录

    作者:哈尔·赫尔曼

    让我们洞见数学和历史,品味其中的狡智、欺瞒和遁辞。这本《数学恩仇录:数学家的十大论战》向我们展示了在数学中,巨大的争端是如何推动数学的伟大进步。伟大的数学头脑思考问题的方式不止一种,数学中的争端为这个说法提供了无可:争辩的证据。受贪婪、嫉妒、野心和自私的驱使,这些争端有着肥皂剧一般的情节,使兄弟反目、父子成仇、学生和导师势同水火。16世纪,为了争得三次方程和四次方程解法的首先发现权,卡尔达诺和塔尔塔利亚大战一场;当塔尔塔利亚利用卡尔达诺的儿子作告密者,将卡尔达诺交给了西班牙宗教裁判所,他们之间的阴谋和对抗才宣告结束。接下来的几个世纪,在解析几何和光学的问题上,笛卡儿和费马争论不休;在微积分的首创权上.牛顿和莱布尼兹之间产生了激烈的争端;在微积分问题上,伯努利兄弟针锋相对;在数学的逻辑基础问题上.庞加莱和罗素战斗不休。在20世纪一场令人瞩目的数学冲突中,希尔伯特和布劳威尔卷了进来,爱因斯坦采取了中立的立场,形容他们之间的论战是青蛙和老鼠的战争。 在这本引人入胜的揭示数学家之间争端的书中,哈尔·赫尔曼既探讨了数学,又探讨了时代的精神。从提出或反驳这些有争议观点的信件,文章和书籍中,从对这些数学家的贡献作出过评价的历史学家的著作中,他酝酿出了这本书。在今天的数学中,很多激起这些争端的观点都很引人注目。例如,希尔伯特的证明理论是一个强有力的数学工具,在计算机科学中尤其如此。罗素的逻辑主义在现在不乏支持者。康托尔的集合论成为现代拓扑学和分形学的基础,它所导致的进步,为无穷小量微积分打下了坚实的基础。
  • 数学世纪

    作者:皮耶尔乔治·奥迪弗雷迪

    《数学世纪:过去100年间30个重大问题》以简短可读的方式论述了整个20世纪的数学。20世纪的数学博大精深,新兴领域及学科的建立发展,许多经典问题得到解决,大量新的有意义的问题的引入,为数学带来了活力。《数学世纪:过去100年间30个重大问题》介绍了数学基础,20世纪的纯粹数学、应用和计算数学,以及目前未解的重要问题,中间穿插了希尔伯特的23个问题的解决情况、菲尔兹奖和沃尔夫奖得主的工作成就等。
  • 数学悖论与三次数学危机

    作者:韩雪涛

    《数学悖论与三次数学危机》通过对三个在数学发展中产生了巨大影响的悖论(毕达哥拉斯悖论、贝克莱悖论、罗紊悖论)的介绍,让读者既能充分了解悖论对数学发展所起到的巨大作用,又能对数学中欧几里得几何、无理数、微积分、集合论等的来龙去脉获得更清晰的认识。还穿插数学家的逸事,融知识性与趣味性于一体。
  • 代数的历史

    作者:德比希

    《代数的历史:人类对未知量的不舍追踪》内容简介:生活在四千年前的古巴比伦人的成就缘何可以与文艺复兴时期的意大利相媲美?丢番图和花拉子米到底谁才是真正的代数之父?虚数是历经了怎样的磨难才被人广为接受的?牛顿和高斯的伟大体现在何处?旷世奇才格罗申迪克是如何书写他的传奇人生的? 来吧,走进《代数的历史》,和Derbyshire一起穿过历史迷雾,体味代数这门最纯净、最严苛的智力学科之非凡魅力,揭开未知量x的前世今生,探寻现实世界最深层、最本质的秘密!
  • 数学史通论(第2版.翻译版)

    作者:[美] Victor J. Katz

    数学史通论:翻译版,ISBN:9787040142532,作者:(美)Victor J.katz著;李文林等译
  • 天才引导的历程

    作者:威廉.邓纳姆

    本书运用类似的方法来研究数学,而书中大师们创造的不是小说或交响乐,而是定理。因此,本书不是一本典型的数学教材,没有一步一步地推导某些数学分支的发展,也没有强调数学在确定行星运行轨道、理解计算机世界,乃至结算支票等方面的应用。当然,数学在这些应用领域取得了惊人的成就,但并非这些世俗功利促使欧几里得、阿基米德或乔治·康托为数学殚精竭虑,终生不悔。他们并不认为应借功利目的为自己的工作辩解,正如莎士比亚不必解释他何以要写十四行诗,而没有写菜谱,或凡高何以要画油画,而没有画广告画一样。 我将在本书中从数学史的角度来探讨某些最重要的证明和最精巧的逻辑推理,并重点阐述这些定理为什么意义深远,以及数学家们是如何彻底地解决了这些紧迫的逻辑问题的。本书的每一章都包含了三个基本组成部分: 第一部分是历史背景。本书所述及的“伟大定理”跨越了2300多年的人类历史。因而本人在论述某一定理之前,将先介绍历史背景,介绍当时的数学状况乃至整个世界的一般状况。像其他任何事物一样,数学也是在一定的历史环境中产生的,因此,有必要指明卡尔达诺二次方程的解法出现在哥白尼日,心说公布后两年和英格兰国王亨利八世死前两年,或强调青年学者艾萨克·牛顿1661年进入剑桥大学学习时、王政复辟对剑桥大学的影响。 第二部分是传说性的。数学是有血有肉的实实在在的人的造物,而数学家的生平则可能反映出灵感、悲剧或怪诞。本书所涉定理体现了许多数学家的勤奋努力,从交游广阔的李昂纳德·欧拉到生性好斗的约翰·伯努利和带有最市俗的文艺复兴特征的赫罗拉莫·卡尔达诺,不一而足。了解这些数学家的不同经历,有助于我们更好地理解他们的工作。 第三部分,也是本书的重点,是在这些“数学精萃”中所表现出的创造性。不读名著,无从理解;不观名画,无从体味,同样,如果不去认真地、一步一步地钻研这些证明方法,也不可能真正掌握这些著名的数学定理。而要理解这些定理,就必须全神贯注。本书各章仅仅意在为理解这些定理梳理线索。
  • 数学史概论

    作者:李文林 编

    《数学史概论(第2版)》以重大数学思想的发展为主线,阐述了从远古到现代数学的历史。书中对古代希腊和东方数学有精炼的介绍和恰当的分析;同时本着“厚今薄古”的原则,充分论述了文艺复兴以来近现代数学的演进与变革,尤其是20世纪数学的概观,内容新颖。《数学史概论(第2版)》中西合炉,将中国数学放在世界数学的背景中述说,更具客观性与启发性。《数学史概论(第2版)》脉络分明,重点突出,并注意引用生动的史实和丰富的图片,可供综合大学、师范院校各专业的学生作为数学史课程的教材,同时也可供广大数学工作者和一般科学爱好者阅读参考。
  • 数学史

    作者:(英)斯科特

    《数学史》是众多有关数学史著作中的一部,但她也是魅力独特的一部。就规模而言,她涉及从上古代到19世纪两千多年整个数学领域中主要数学概念的发展,结构宏大紧密;就细节而言,她让我们与牛顿、高斯这些巨人进行亲密接触,将代数、几何、算术、三角学的发展脉络娓娓道来。
  • 数学史(上下)

    作者:卡尔•B.博耶◎著,尤塔•C.梅兹巴赫◎

    《数学史》1968年首次出版,1991年出了修订版,虽都距今甚远,但作为数学史料,并不过时。这正如数学的特征:只有在数学中,不存在重大的修正——只存在拓展。例如一旦希腊人发展出了演绎法,就他们所做的事情而言,他们是正确的,永远正确。欧几里得并不完备,他的工作得到了巨大的扩展,但只是扩展而不需要改正。他的定理,所有定理,到今天都是有效的。 本书把数学几千年的发展浓缩为这本编年史中。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但作者并没有忽视中国文明、印度文明和阿拉伯文明的贡献。毫无疑问,这本书是(而且在很长时期内将会一直是)一部经典的关于数学及创造这门学科的数学家们的单卷本历史著作。既有学术性,又有可读性。 我们为书中的史实、观念、精美插图以及引领我们走过数学发展长河的大师们所折服,遂决定把它引入中国,以飨中国热爱数学、崇尚科学精神的读者。
  • 数学及其历史

    作者:John Stillwell

    本书极具特色,它既不是一般的数学教材也不是一般的数学史教材,而是一本通过数学史来讲授数学的教材。本书的作者通过讲述某些数学论题,组织与之相关的概念、人物、思想、问题的背景及发展中的故事等材料,赋予读者数学的统一性的观点。 本书自1989年出版第一版以来,至今一直受到数学界的高度评价和数学爱好者的欢迎。本书对提高数学专业师生及广大爱好数学人士的数学修养很有价值。
  • 微积分的历程

    作者:William Dunham

    “微积分”这一名称最早出现在哪本书中?第一本微积分教科书又是谁人所写?微积分究竟是谁人发明的?著名的洛必达法则居然是伯努利的研究成果?谁被誉为“分析学的化身”?谁又被誉为“现代分析学之父”?哪些数学天才使微积分的创建过程终于画上完美的句号?……本书将带你一一探究上述问题。 本书宛如一座陈列室,汇聚了十多位数学大师的杰作,当你徜徉其中时会对人类的想象力惊叹不已,当你离去时必然满怀对天才们的钦佩感激之情。作者同读者一起分享了分析学历史中为人景仰的理论成果。书中的每一个结果,从牛顿的正弦函数的推导,到伽玛函数的表示,再到贝尔的分类定理,无一不处于各个时代的研究前沿,至今还闪烁着耀眼夺目的光芒。 本书文风典雅,文笔优美,兼具趣味性和学术性。对于中学生乃至大学师生,都是极为难得的课外读物。
  • 数学沉思录

    作者:[美] 李维(Mario Livio)

    数学无处不在,无所不能。它渗透在所有领域,能解释宇宙万物,完全超越了人类的能力。本书按照数学关键概念的演化过程来组织结构,引经据典地从哲学角度全方位阐释数学的本质,以及数学和我们的物质世界、人类思维之间的关系。其间,传奇的历史人物和神秘的古老传说让深奥的哲学论证趣味横生。 本书适合所有对数学感兴趣的读者阅读。 博大精深的数学究竟是人类的发明还是发现?为什么它竟能描述宇宙万物的规律?是否真的有一位无所不能的上帝,他本身就是数学家呢? 蜚声世界的科普名家Mario Livio,回顾了千百年来人类所进行的深层次思考,试图从哲学角度阐释数学的本质,揭示数学与物质世界和人类思维之间的紧密联系。从信奉万物皆数的毕达 哥拉斯、刀斧之下依然从容演算的阿基米德,到自制天文望远镜探索宇宙的近代科学始祖伽利略、坚持“我思故我在”的解析几何之父笛卡儿,再到极力反对柏拉图 主义的现代数学家阿蒂亚,数学思想几经发展又已一脉相承。历史上这些伟大的科学家在各自领域的重要贡献、他们在数学发展史上的远见卓识,以及他们的智慧人 生和传奇故事,绘成一幅幅五彩斑斓的历史画卷,自Livio的丹青妙笔下缓缓流露舒展。
  • The Princeton Companion to Mathematics

    作者:Gowers, Timothy (EDT

    This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics, providing the context and broad perspective that are vital at a time of increasing specialization in the field. Packed with information and presented in an accessible style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. * Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors * Presents major ideas and branches of pure mathematics in a clear, accessible style * Defines and explains important mathematical concepts, methods, theorems, and open problems * Introduces the language of mathematics and the goals of mathematical research * Covers number theory, algebra, analysis, geometry, logic, probability, and more * Traces the history and development of modern mathematics * Profiles more than ninety-five mathematicians who influenced those working today * Explores the influence of mathematics on other disciplines * Includes bibliographies, cross-references, and a comprehensive index
  • 20世纪数学的五大指导理论

    作者:(美)约翰・L・卡斯蒂

    《20世纪数学的五大指导理论》向读者展示了20世纪数学家的艺术的五个最精致的成就:极小极大定理(对策论)、布劳威尔不动点定理(拓扑学)、莫尔斯定理(奇点理论)、停机定理(计算的理论)、单纯形法(最优化理论)。
  • 数学的源与流

    作者:张顺燕

    数学的源与流 作者:张顺燕 编者:张顺燕 数学的源与流 出版社:高等教育出版社 ·页码:545 页 ·出版日期:2003年 ·ISBN:7040129302 ·条形码:9787040129304 ·版本:2版 ·装帧:平装 ·开本:32 ·中文:中文 产品信息有问题吗?请帮我们更新产品信息。 内容简介 《数学的源与流》是北京大学数学素质教育课的主要教材。内容包括著名的数学问题、具有重要使用价值的应用问题,还包括数学的一些近代应用。 本此修订对第一版中的错误、遗漏进行了修改,对一些提法进行了规范,并增加了丁石孙先生对《数学的源与流》所做的序言。 《数学的源与流》立意新颖、内容丰富、涵盖面广、观点高、起点低,只要具备中等数学的基础就能读懂大部分内容;最后几章要用到初等微积分。 《数学的源与流》可作为大专院校数学素质教育的参考书,对广大中学教师提高数学素养也极有参考价值。 目录 序 前言 第一章 数学与人类文明 1.1.1 数学的内容 1.1.2 数学的特点 1.1.3 数学对人类文明的贡献 1.1.4 数学发展简史 1.1.5 现代数学发展的新趋向 1.1.6 计算机的影响 1.1.7 关于中等教育 第二章 数系 §2.1 无理数的诞生 2.1.1 自然数 2.1.2 代数结构的出现 2.1.3 逆运算的作用 2.1.4 有理数的稠密性 2.1.5 有理数域 2.1.6 第一次数学危机 2.1.7 历史意义 2.1.8 第一次数学危机的消除 2.1.9 层次 2.1.10 反证法 习题 §2.2 无限的比较 2.2.1 一段富有启发性的历史对话 2.2.2 对谈话的分析和解答 2.2.3 有理数集是可数的 2.2.4 实数集是不可数的 2.2.5 代数数 2.2.6 无限的算术 2.2.7 结语 习题 §2.3 复数 2.3.1 复数的引进 2.3.2 复数的几何表示 2.3.3 复数的三角表示和指数表示 2.3.4 复数域 2.3.5 乘方与开方 2.3.6 单位根 2.3.7 复数的确认 习题 第三章 连分数及其在天文学上的应用 §3.1 从辗转相除法谈起 3.1.1 辗转相除法 3.1.2 连分数 习题 §3.2 连分数在天文学上的应用 3.2.1 为什么四年一闰,而百年又少一闰 3.2.2 公历的改革 3.2.3 农历的月大月小、闰年闰月 3.2.4 二十四节气 3.2.5 闰月放在哪儿 …… 第四章 素数定理与哥德巴赫猜想 第五章 从勾股定理到费马大定理 第六章 欧氏几何回顾 第七章 同余理论及其应用 第八章 分形与混沌 第九章 一笔画和邮递路线问题 第十章 代数方程式 第十一章 双曲几何的庞加莱模型 第十二章 微积分前期史 第十三章 实数理论 第十四章 极限、连续与积分 第十五章 数学模型 第十六章 外微分形式 第十七章 数学的真理性
  • 什么是数学

    作者:Richard Courant,Herb

    本书是享有世界声誉的不朽名著,由Richard Courant和Herbert Robbins两位数学大家合著。原版初版于1941年,几十年来一直畅销不衰。书中充满了数学的奇珍异品,生动有趣地描绘出一幅数学世界的画卷,让你如入宝山,目不暇给。第2版由著名数学家Ian Stewart增写了新的一章,阐述了数学的最新进展,包括四色定理和费马大定理的证明等。. 这是一本人人都能读的数学书,将为你开启一扇认识数学世界的窗口。无论你是初学者还是专家,学生还是教师,哲学家还是工程师,通过这本书,你都将领略到数学之美,最终迷上数学。
  • 数学在19世纪的发展(第二卷)

    作者:F.克莱因(Felix Klein)

    《数学在19世纪的发展(第2卷)》是F. 克莱因的名著《数学在19世纪的发展》的第二卷。与第一卷有所不同,它是专门讲述不变量理论以及相对论的数学源头,即相对论的数学史前史的,其中也包括了克莱因本人的一些研究成果。从数学上来讲,狭义相对论可以说就是在Lorentz变换群下的不变量理论,而广义相对论则可说是在一般点变换群下的不变量理论。在这个意义上,相对论与克莱因的《Erlangen纲领》在思想上是一脉相承的。相对论与19世纪数学在思想上与历史上的联系第一次在本书中得到了详细的论述。 《数学在19世纪的发展(第2卷)》不再是按时间发展的顺序讲述,而是将不变量理论及其在物理学中的应用归拢到一起做系统的讲述。时至今日,它仍是学习不变量理论及其应用的一本极好的教材,对学习数学和物理的学生和教师都有极高的参考价值,也适合对数学及科学思想文化发展感兴趣的读者阅读。
  • 数学在19世纪的发展(第一卷)

    作者:F.克莱因

    《数学在19世纪的发展(第1卷)》是F.克莱因的名著,其内容是作者在临终前一两年给部分同事所作的讲演,而由他的学生们编辑成书。书十介绍了数学科学在19世纪的发展。在本卷(第一卷)非常详尽且有批判性地分析了高斯、黎曼、魏尔斯特拉斯、柯西、伽罗瓦等一大批最重要的数学家的数学思想和贡献;也介绍了一大批物理学(特别是数学物理学)大师如开尔文、麦克斯韦、亥姆霍兹的思想和业绩;并详细讨论了一些最重要的数学分支(函数论、射影几何、代数几何等)的缘起和前景。 《数学在19世纪的发展(第1卷)》适合从事数学的研究和教学的大学水平以上的学生和教师学习参考,也适合研究科学史、数学史和关心、研究一般的科学思想文化发展的读者阅读。
  • 古今数学思想(四)

    作者:[美] 莫里斯·克莱因

    第四册的内容包括实数和超限数的基础、几何基础、19世纪的数学、实变函数论、积分方程、发散级数、抽象代数的出现、张量分析和微分几何、数学基础等。