欢迎来到相识电子书!

标签:数论

  • 阿基米德的报复

    作者:(美)保罗.霍夫曼

    前言 本书主要概述了数学所涉及的领域和范畴。我并不认为这本书包罗万象,然而它选择的主题很离奇,但它也只能如此。数学是世间每所大学都从事研究的一门学科,它至少像生物学一样有广泛的领域,在生物界中,某个研究人员正努力研究艾滋病毒,而另一个研究人员则在研究袋熊的社会化问题。…… 第一篇 数 字 第一章 邪恶的数和友好的数 毕达哥拉斯及其好友认为,整数的完满性,即完全数是任何其所有除数之和(该除数本身外)等于该数本身的整数。第一个完全数是6。它可被1、2和3整除并且是1、2和3之和。第二个完全数是28。它的除数是1、2、4、7和14,这些数加起来为28。希腊人所知道的就是这些,尽管他们做过尝试,但没有发现奇数完全数。…… 第二章 阿基米德的报复 按照阿基米德的愿望,人们在他的墓碑上刻了一个圆柱体,柱体里面是一个球体——象征着他的骄傲的发现:球的体积是装下该球的最小的圆柱体体积的三分之二。…… 第三章 素数的滥用 然而在今天,这座宫殿里却出了问题。那最纯的论题——素数正在以国家安全的名义滥用自己。据报道我们政府所用的某些最好的密码是依靠素数创制的。在这些密码中,字母被转换成数字,其根据纯然是数学的:某些计算程序较易创制但极难破译。例如,计算机计算两个100位数的素数的积极其容易。但已知那个200位数的积去恢复那些素数除数却极其困难(当然,除非有人告诉你)。 …… 第四章 比尔密码之谜 密码学——编制和破译密码的科学——日益成为那些能够获得最新计算机技术的数学家所从事的量性学科。今天在军队和私人企业中所使用的密码与昨日的密码截然不同,总的来说是变得更为难以破译了。然而,尽管取得了这些进步,这种新型的数学密码在许多场合也不管用,而对一些古老的密码,最先进的破译技术仍然无法解开。…… 第二篇 形 状 第五章 制作复活节大彩蛋 自从雷施离开韦格勒维尔镇,10年过去了。当然,该镇依然存在,而这座独具匠心的纪念碑使韦格勒维尔镇出现在地图上(还被收载入女王伊丽莎白的加拿大旅游指南中)。该镇惟一的委屈是这个复活节彩蛋尚未被收入《吉尼斯世界纪录大全》之中。看来这是不公平的,加拿大艾伯塔省的另一个城镇卡尔加里镇就曾因用20,117个鸡蛋烹调出世界上最大的煎蛋饼而载入《吉尼斯世界纪录大全》。 …… 第六章 麦比乌斯分子 数学不仅可以在最宏大的规模上帮助进行形状设计,如3层半楼层高的复活节彩蛋,而且还可以在微小的范围内帮助设计。本章将叙述美国博尔德市科罗拉多大学的戴维·沃尔巴及其同事们如何在奇特的麦比乌斯带中合成分子的故事。…… 第七章 遗漏了的带一把手的三孔空心球形问题 150年来,许多数学家都曾研究肥皂膜的形状,而且霍夫曼和米克斯发现的许多曲面都是与这些形状有关的。如果把一铁丝圆环浸没在肥皂液中,然后取出,那么横跨在铁环上的肥皂膜形状是平圆盘状的。这种形状被认为是极小的曲面,因为在可能横跨铁环的所有曲面中,平圆盘形具有最小的面积。…… 第三篇 计算机 第八章 图灵的通用计算机 图灵计算机是一个非凡的概念。不过从其一系列性能的观点来看,它却是非常有限的。即使你对计算机的程序设计一无所知(或许整个主题会使你吃惊),但图灵计算机的如此有限性能,也会使你很快地理解它的“内部”工作情况,从而高兴地为它编写程序。然而,从计算的观点看,它是能够进行任何运算的,换句话说,数学家能够进行的任何运算,想象的最大功率计算机也能够进行运算。…… 第九章 威利·洛曼无辜地死去了吗? 算法的功能之一是其能用于一个问题的所有实例。例如加法算法可以算出任何两个整数的和。你虽然花费时间去详尽写出一种算法的全部细节,但你却得到了一种能够保证工作的方法。计算机的程序或是单一的算法或是系列的算法。…… 第十章 计算机——未来的象棋之王 国际象棋的数学可以证明全方位搜索的低效性。在人类国际象棋大师之间的对弈,典型的是对弈了84着棋(1着棋即指定的一方走一步棋)。由于每个棋位平均有38步法定棋步,因此穷举搜索法必须考虑3884个可能的棋位。那是一个庞大的数字:3884大于10132,即1的后面有132个0。宇宙已经存在了大约1018秒,因此,即使让计算机能够工作像宇宙年龄那么长的时间,每秒钟也要分析10114个国标象棋棋位,才能看清博弈的结局。…… 第十一章 男孩和他的计算机 连接机是新近出现的一种最引人注目的计算机,带有一个并行处理机,它正开始改变计算机科学。传统计算机,即使是功率大的,也只靠单独的处理机进行计算。连接机则根本不同;它利用65,536个小处理机,或叫做微型电脑的总体功率,一起工作,解决一个问题。…… 第四篇 “一人一票” 第十二章 数学中的民主 对策论是对冲突进行数学分析,它存在于政治、商业、军事或各项事务之中。对策论诞生于1927年,由数学全能行家约翰·冯纽尔曼创立。冯纽尔曼认识到经济与政治中的某些决策条件在数学上与某些策略对策等价。所以从分析这些对策中所学到的东西可以直接应用于现实生活中的决策上。…… 第十三章 国会议员的数学游戏 为什么按比例分配是这样一个问题呢?美国宪法第一条第二款似乎提供了一个直接的答案:每个州派往众议院的代表人数应与本州人口成比例。问题是,虽然一个国会议员的忠心可分,而他的躯体却不可分;人就像便士或电荷或亚原子自旋状况一样,是量子化的。……
  • 哈代数论

    作者:G.H.Hardy,Edward M.W

    内 容 提 要 本书是一本经典的数论名著, 取材于作者在牛津大学、剑桥大学等大学授课的讲义. 主要包括素数理论、无理数、费马定理、同余式理论、连分数、用有理数逼近无理数、不定方程、二次域、算术函数、数的分划等内容. 每章章末都提供了相关的附注, 书后还附有译者编写的相关内容的最新进展, 便于读者进一步学习. 本书可供数学专业高年级学生、研究生、大学老师以及对数论感兴趣的专业读者学习参考.
  • 初等数论及其应用

    作者:Kenneth H.Rosen

    本书以经典理论与现代应用相结合的方式介绍了初等数论的基本概念和方法,内容包括整除、同余、二次剩余、原根以及整数的阶的讨论和计算。此外,书中附有60多位对数论有贡献的数学家的传略。 本书内容丰富,趣味性强,条理清晰,既可以作为高等院校计算机及相关专业的数论教材,也可以作为对数论和密码学感兴趣的读者的初级读物。 本书是数论课程的经典教材,自出版以来,深受读者好评,被美国加州大学伯克利分校,伊利诺伊大学,得克萨斯大学等数百所名校采用。 经典理论与现代应用的结合是本书的一大特色。第5版通过增强实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。与时俱进是本书的又一大特色,为使本版与最新的研究成果及近几年的新理论优美结合,作者花费了大量心血。本书还以别出心裁的习题安排而著名,书中收入的富于挑战性的习题旨在帮助读者探究数论中的关键概念,同时提供两类习题:一类是计算题;另一类是上机编程练习,这使得读者能够将数学理论与编程技巧实践联系起来。 目录 前言 符号表 何谓数论 第1章 整数 1.1 数和序列 1.2 和与积 1.3 数学归纳法 1.4 斐波那契数 1.5 整除性 第2章 整数的表示法和运算 2.1 整数的表示法 2.2 整数的计算机运算 2.3 整数运算的复杂度 第3章 素数和最大公因子 3.1 素数 3.2 素数的分布 3.3 最大公因子 3.4 欧几里得算法 3.5 算术基本定理 3.6 因子分解法和费马数 3.7 线性丢番图方程 第4章 同余 4.1 同余引言 4.2 线性同余方程 4.3 中国剩余定理 4.4 求解多项式同余方程 4.5 线性同余方程组 4.6 利用波拉德方法分解整数 第5章 同余的应用 5.1 整除性检验 5.2 万年历 5.3 循环赛赛程 5.4 散列函数 5.5 校验位 第6章 特殊的同余式 6.1 威尔逊定理和费马小定理 6.2 伪素数 6.3 欧拉定理 第7章 乘性函数 7.1 欧拉函数 7.2 因子和与因子个数 7.3 完全数和梅森素数 7.4 莫比乌斯反演 第8章 密码学 8.1 字符密码 8.2 分组密码和流密码 8.3 取幂密码 8.4 公钥密码 8.5 背包密码 8.6 密码协议及应用 第9章 原根 9.1 整数的阶和原根 9.2 素数的原根 9.3 原根的存在性 9.4 指数的算术 9.5 用整数的阶和原根进行素性检验 9.6 通用指数 第10章 原根与整数的阶的应用 10.1 伪随机数 10.2 埃尔伽莫密码系统 10.3 电话线缆绞接中的一个应用 第11章 二次剩余 11.1 二次剩余与二次非剩余 …… 第12章 十进制分数与连分数 第13章 某些非线性丢番图方程 第14章 高斯整数 附录 参考文献
  • 数论教程

    作者:塞尔

    《数论教程》是著名法国数学家、菲尔兹奖获得者Jean—Pierre Serre在20世纪 60年代为法国巴黎高等师范学院二年级授课的数论讲义。讲义对数论的三个基本领域:二次型、Dirichlet密度函数和模形式进行了精练和现代的介绍。内容分为两个部分。第一部分用局部化和p-adic工具讲述有理数域上二次型的局部一整体原则(算术理论),第二部分为解析理论,讲述算术级数中素数分布定理的解析证明和模形式理论。《数论教程》自成体系,叙述简洁明快,深入浅出,被公认是学习近代数论的经典入门书籍。
  • 基础数论

    作者:(法)Andre Weil

    The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set of notes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long forgotten manuscript by Coevally, of prewar vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very well. It contained a brief but essentially complete account of the main features of class field theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I included such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather closely at some critical points. 目录 Chronological table Prerequisites and notations Table of notations PART Ⅰ ELEMENTARY THEORY Chapter Ⅰ Locally compact fields 1 Finite fields 2 The module in a locally compact field 3 Classification of locally compact fields 4 Structure 0f p-fields Chapter Ⅱ Lattices and duality over local fields 1 Norms 2 Lattices 3 Multiplicative structure of local fields 4 Lattices over R 5 Duality over local fields Chapter Ⅲ Places of A-fields 1 A-fields and their completions 2 Tensor-products of commutative fields 3 Traces and norms 4 Tensor-products of A-fields and local fields Chapter Ⅳ Adeles 1 Adeles of A-fields 2 The main theorems 3 Ideles 4 Ideles of A-fields Chapter Ⅴ Algebraic number-fields 1, Orders in algebras over Q 2 Lattices over algebraic number-fields 3 Ideals 4 Fundamental sets Chapter Ⅵ The theorem of Riemann-Roch Chapter Ⅶ Zeta-functions of A-fields 1 Convergence of Euler products 2 Fourier transforms and standard functions 3 Quasicharacters 4 Quasicharacters of A-fields 5 The functional equation 6 The Dedekind zeta-function 7 L-functions 8 The coefficients of the L-series Chapter Ⅷ Traces and norms 1 Traces and norms in local fields 2 Calculation of the different 3 Ramification theory 4 Traces and norms in A-fields 5 Splitting places in separable extensions 6 An application to inseparable extensions PART Ⅱ CLASSFIELD THEORY Chapter IX Simple algebras 1 Structure of simple algebras 2 The representations of a simple algebra 3 Factor-sets and the Brauer group 4 Cyclic factor-sets 5 Special cyclic factor-sets Chapter Ⅹ Simple algebras over local fields 1 Orders and lattices 2 Traces and norms 3 Computation of some integrals Chapter Ⅺ Simple algebras over A-fields 1. Ramification 2. The zeta-function of a simple algebra 3. Norms in simple algebras 4. Simple algebras over algebraic number-fields . . Chapter Ⅻ. Local classfield theory 1. The formalism of classfield theory 2. The Brauer group of a local field 3. The canonical morphism 4. Ramification of abelian extensions 5. The transfer Chapter XIII. Global classfield theory I. The canonical pairing 2. An elementary lemma 3. Hasse's "law of reciprocity" . 4. Classfield theory for Q 5. The Hiibert symbol 6. The Brauer group of an A-field 7. The Hilbert p-symbol 8. The kernel of the canonical morphism 9. The main theorems 10. Local behavior of abelian extensions 11. "Classical" classfield theory 12. "Coronidis loco". Notes to the text Appendix Ⅰ. The transfer theorem Appendix Ⅱ. W-groups for local fields Appendix Ⅲ. Shafarevitch's theorem Appendix Ⅳ. The Herbrand distribution Index of definitions
  • 数论导引

    作者:(英)G.H.Hardy,E.M.Wri

    本书是一本经典的数论名著,取材于作者在牛津大学、剑桥大学等大学授课的讲义。主要包括素数理论、无理数、费马定理、同余式理论、连分数、用有理数逼近无理数、不定方程、二次域、算术函数、数的分划等内容。每章章末都提供了相关的附注,书后还附有译者编写的相关内容的最新进展,便于读者进一步学习。. 本书可供数学专业高年级学生、研究生、大学老师以及对数论感兴趣的专业读者学习参考。
  • 初等数论

    作者:潘承洞

    《初等数论》自1992年9月出版以来,已发行24000册,深受教师和学生的欢迎。在第二版中,《初等数论》作者根据10年来读者和《初等数论》编辑提出的宝贵意见,以及在教学实践中的体会,对《初等数论》内容做了进一步修改与完善(见第二版说明),使之更适宜于教学需要。《初等数论》是大学初等数论课教材。全书共分九章。内容包括:整除,不定方程,同余,同余方程,指数与原根,连分数,素数分布的初等结果,数论函数等。书中配有较多的习题,书末附有提示与解答。《初等数论》积累了作者数十年教学与科研的经验,遵循少而精的原则,精心选材。为便于学生理想,对重点内容多侧面分析,从不同角度进行阐述。
  • 素数的音乐

    作者:马科斯,Marcus du Sautoy

    本书是“数学圈丛书”之一,该书是一本新视角下的数学读物,它不为专门传达任何具体的数学知识和解题技巧,而以“非数学的形式来普及数学”,着重宣扬数学和数学家的思想和精神。它的目的不是教人学数学,而是改变人们对数学和数学家的看法,让数学融入大众文化,回到人们的生活。你可以怀着360样心情来享受数学,经历它的趣味和生命,感悟符号背后的情感和人生。
  • 数论

    作者:[法]André Weil

    《数论:从汉穆拉比到勒让德的历史导引》内容简介:数论——或者一些人称之为的算术,是最古老、最纯粹、最有活力、最初等却也是最深奥的数学领域。这门学科具有“数学皇后”的名声绝非偶然。一些最为复杂的传统的数学思想便是由对数论的基本问题的研究发展起来的。 对数论有杰出贡献的韦伊,写成了诠释数论历史的这《数论:从汉穆拉比到勒让德的历史导引》;他的研究内容涵盖了大约三十六个世纪的算术工作——从一块可追溯到汉穆拉比王朝的古巴比伦的泥板到勒让德的《论数论》(1798)。韦伊一直希望向有较好教育背景的读者讲述他的研究领域,这促使他在问题的分析、数论方法的演变以及它们在数学中的意义方面使用了历史性的解读方法。在他的论述过程中,韦伊和读者一起来到现代数论的四位主要作者(费马、欧拉、拉格朗日、勒让德)的工作室,并在那里进行了一场仔细的、带有批判眼光的查验。《数论:从汉穆拉比到勒让德的历史导引》富含知识史的广博内容,对了解我们的文化遗产有很重要的贡献。
  • 费马大定理

    作者:(英)西蒙・辛格