欢迎来到相识电子书!

标签:Mathematics

  • 实分析与复分析

    作者:鲁丁 (Walter Rudin)

    本书是分析领域内的一部经典著作。毫不夸张地说,掌握了本书,对数学的理解将会上一个新台阶。全书体例优美,实用性例优美,实用性很强,列举的实例简明精彩。无论实分析部分还是复分析部分,基本上对所有给出的命题都进行了论证。另外,书中还附有大量设计巧妙的习题——这些习题可以真实地检测出读者对课程的理解程序,有的还要求对正文中的原理进行论证。
  • 数学分析新讲(第一册)

    作者:张筑生

    《数学分析新讲(1)》的前身是北京大学数学系教学改革实验讲义。改革的基调是:强调启发性,强调数学内在的统一性,重视学生能力的培养。书中不仅讲解数学分析的基本原理,而且还介绍一些重要的应用(包括从开普勒行星运动定律推导万有引力定律等),从概念的引入到定理的证明,书中作了煞费苦心的安排处理,使传统的材料以新的面貌出现。书中还收入了一些有重要理论意义与实际意义的新材料(例如利用微分形式的积分证明布劳沃尔不动点定理等)。全书共三册,第一册的内容是:一元微积分,初等微分方程及其应用;第二册的内容是:一元微积分的进一步讨论,多元微积分;第三册的内容是:曲线、曲面与微积分,级数与含参变元的积分等。 《数学分析新讲(1)》可作为大专院校数学系基础课教材或补充读物,又可作为大、中学教师,科学工作者和工程技术人员案头常备的数学参考书。 《数学分析新讲(1)》是一部优秀的“数学分析”课程的教材,书中丰富的例题为读者提供了基础训练的平台,《数学分析新讲(1)》配套的练习题及解题指导请读者参考《数学分析解题指南》(林源渠、方企勤编,北京大学出版社,2003)。
  • 古今数学思想(三)

    作者:[美] 莫里斯·克莱因

    《古今数学思想》第三册全面论述了近代数学大部分分支的历史发展,着重论述了数学思想的古往今来,说明了数学的意义、以及各门数学之间以及数学和其他自然科学的关系。
  • 纯数学教程

    作者:[英] G.H.Hardy

    自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。 在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。
  • How to Solve It

    作者:G. Polya

    A perennial bestseller by eminent mathematician G. Polya, "How to Solve It" will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft - indeed, brilliant - instructions on stripping away irrelevancies and going straight to the heart of the problem. In this best-selling classic, George Polya revealed how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams.Generations of readers have relished Polya's deft instructions on stripping away irrelevancies and going straight to the heart of a problem. "How to Solve It" popularized heuristics, the art and science of discovery and invention. It has been in print continuously since 1945 and has been translated into twenty-three different languages. Polya was one of the most influential mathematicians of the twentieth century. He made important contributions to a great variety of mathematical research: from complex analysis to mathematical physics, number theory, probability, geometry, astronomy, and combinatorics. He was also an extraordinary teacher - he taught until he was ninety - and maintained a strong interest in pedagogical matters throughout his long career.In addition to "How to Solve It", he published a two-volume work on the topic of problem solving, "Mathematics of Plausible Reasoning", also with Princeton. Polya is one of the most frequently quoted mathematicians, and the following statements from "How to Solve It" make clear why: "My method to overcome a difficulty is to go around it." "Geometry is the science of correct reasoning on incorrect figures." "In order to solve this differential equation you look at it till a solution occurs to you."
  • Introduction To Commutative Algebra

    作者:Michael Atiyah,Ian M

    This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
  • 代数

    作者:(美) Michael Artin

    本书由著名代数学家与代数几何学家Michael Artin所著,是作者在代数领域数十年的智慧和经验的结晶。书中既介绍了矩阵运算、群、向量空间、线性算子、对称等较为基本的内容,又介绍了环、模型、域、伽罗瓦理论等较为高深的内容。本书对于提高数学理解能力,增强对代数的兴趣是非常有益处的。此外,本书的可阅读性强,书中的习题也很有针对性,能让读者很快地掌握分析和思考的方法。 作者结合这20年来的教学经历及读者的反馈,对本版进行了全面更新,更强调对称性、线性群、二次数域和格等具体主题。本版的具体更新情况如下:  新增球面、乘积环和因式分解的计算方法等内容,并补充给出一些结论的证明,如交错群是简单的、柯西定理、分裂定理等。  修订了对对应定理、SU2 表示、正交关系等内容的讨论,并把线性变换和因子分解都拆分为两章来介绍。  新增大量习题,并用星号标注出具有挑战性的习题。 本书在麻省理工学院、普林斯顿大学、哥伦比亚大学等著名学府得到了广泛采用,是代数学的经典教材之一。
  • Partial Differential Equations

    作者:Lawrence C. Evans

  • Convex Optimization

    作者:Stephen Boyd,Lieven

    Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
  • Problems and Theorems in Analysis I

    作者:George Pólya,Gábor S

  • Problems and Theorems in Analysis II

    作者:George Pólya,Gábor S

  • 陶哲轩实分析

    作者:陶哲轩

    强调严格性和基础性,书中的材料从源头——数系的结构及集合论开始,然后引向分析的基础(极限、级数、连续、微分、Riemann积分等),再进入幂级数、多元微分学以及Fourier分析,最后到达Lebesgue积分,这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录。课程的材料与习题紧密结合,目的是使学生能动地学习课程的材料,并且进行严格的思考和严密的书面表达的实践。
  • Proofs from THE BOOK

    作者:Martin Aigner,Günter

  • Linear Algebra Done Right

    作者:Sheldon Axler

    This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
  • 复分析

    作者:Elias M. Stein

    《复分析》由在国际上享有盛誉的普林斯顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。关于《复分析》的详细介绍,请见“影印版前言”。
  • 纯数学教程

    作者:(英)G.H.Hardy

    本书是一部百年经典,在20世纪初奠定了数学分析课程的基础。书中对数学分析这一基础课程的重要内容——微积分学进行了 系统的阐述,对很多经典的数学给出了严谨的证明方法,是Hardy数学思想智慧的结晶。另外,书中收集了许多极富思考价值的练习题,值得一提的是,还收集了当年英国剑桥大学荣誉学位考试所采用的试题。
  • Functional Analysis

    作者:Elias M. Stein,Rami

    This is the fourth and final volume in the Princeton Lectures in Analysis, a series of textbooks that aim to present, in an integrated manner, the core areas of analysis. Beginning with the basic facts of functional analysis, this volume looks at Banach spaces, Lp spaces, and distribution theory, and highlights their roles in harmonic analysis. The authors then use the Baire category theorem to illustrate several points, including the existence of Besicovitch sets. The second half of the book introduces readers to other central topics in analysis, such as probability theory and Brownian motion, which culminates in the solution of Dirichlet's problem. The concluding chapters explore several complex variables and oscillatory integrals in Fourier analysis, and illustrate applications to such diverse areas as nonlinear dispersion equations and the problem of counting lattice points. Throughout the book, the authors focus on key results in each area and stress the organic unity of the subject.
  • 数学分析新讲(第二册)

    作者:张筑生

    本书的前身是北京大学数学系教学改革实验讲义。改革的基调是,强调启发性,强调数学内在的统一性,重视学生能力的培养。书中不仅讲解数学分析的基本原理,而且还介绍一些重要的应用(包括从开普勒行星运动定律推导万有引力定律)。从概念的引入到定理的证明,书中作了然费苦心的安排,使传统的材料以新的面貌出现。书中还收入了一些有重要理论意义与实际意义的新材料(例如利用微分形式的积分证明布劳沃尔不动点定理等)。 全书共三册。第一册内容是:一元微积分,初等微分方程及其应用。第二册内容是:一元微积分的进一步讨论,广义积分,多元函数微分学,重积分。第三册内容是,微分学的几何应用,曲线积分与曲面积分,场论介绍,级数与含参变元的积分等。 本书可作为大专院校数学系数学分析基础课教材或补充读物,又可作为大、中学教师,科技工作者和工程技术人员案头常备的数学参考书。
  • Algebraic Topology

    作者:Allen Hatcher

    In most mathematics departments at major universities one of the three or four basic first-year graduate courses is in the subject of algebraic topology. This introductory textbook in algebraic topology is suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. The four main chapters present the basic material of the subject: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature of the book is the inclusion of many optional topics which are not usually part of a first course due to time constraints, and for which elementary expositions are sometimes hard to find. Among these are: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and a full exposition of Steenrod squares and powers. Researchers will also welcome this aspect of the book.
  • 泛函分析(影印版)

    作者:Peter D. Lax

    《泛函分析(影印版)》是美国科学院院士Peter D.Lax在CotJrant数学所长期讲授泛函分析课程的教学经验基础上编写的。《泛函分析(影印版)》包括泛函分析的基本内容:Barlach空间、Hilbert空间和线性拓扑空间的基本概念和性质,线性拓扑空间中的凸集及其端点集的性质,有界线性算子的性质等。可作为本科生泛函分析课的教学内容;还包括泛函分析较深的内容:自伴算子的谱分解理论。紧算子的理论,交换Barlach代数的Gelfand理论,不变子空间的理论等。可作为研究生泛函分析课的教学内容。《泛函分析(影印版)》特别强调泛函分析与其他数学分支的联系及泛函分析理论的应用,可以使读者深刻地理解到:抽象的泛函分析理论有着丰富的数学背景。