欢迎来到相识电子书!

标签:机器学习

  • 统计决策论及贝叶斯分析

    作者:(美)James O.Berger

    统计决策论及贝叶斯分析:第二版,ISBN:9787503725333,作者:(美)[J.O.伯杰]James O.Berger著;贾乃光译
  • 实用多元统计分析

    作者:约翰逊

    多元统计分析是统计学中内容十分丰富、应用范围极为广泛的一个分支。在自然科学和社会科学的许多学科中,研究者都有可能需要分析处理有多个变量的数据的问题。能否从表面上看起来杂乱无章的数据中发现和提炼出规律性的结论,不仅需要对所研究的专业领域有很好的训练,而且要掌握必要的统计分析工具。 对研究者来说,本书是学习掌握多元统计分析的各种模型和方法的一本有价值的参考书:首先,它做到了“浅入深出”,既可供初学者入门,又能使有较深基础的人受益;其次,它既侧重于应用,又兼顾必要的推理论证,使学习者既能学到“如何”做,又能在一定程度上了解“为什么”这样做;最后,它内涵丰富、全面,不仅基本包括各种在实际中常用的多元统计分析方法,而且对现代统计学的最新思想和进展有所介绍。值得一提的是,本书中有大量来自实际问题的数据实例,通过对这些实例的分析,读者可以学到如何将一个实际问题转化为恰当的统计问题,进而选择恰当的方法来进行分析。
  • 统计学习基础

    作者:Robert Tibshirani,Tr

    《统计学习基础:数据挖掘、推理与预测》介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础:数据挖掘、推理与预测》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。
  • Statistics

    作者:David Freedman,Rober

    Renowned for its clear prose and no-nonsense emphasis on core concepts, Statistics covers fundamentals using real examples to illustrate the techniques. The Fourth Edition has been carefully revised and updated to reflect current data.
  • Numerical Optimization

    作者:Jorge Nocedal,Stephe

    Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.Drawing on their experiences in teaching, research, and consulting, the authors have produced a textbook that will be of interest to students and practitioners alike. Each chapter begins with the basic concepts and builds up gradually to the best techniques currently available.Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field.Above all, the authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.MMOR Mathematical Methods of Operations Research, 2001: "The book looks very suitable to be used in an graduate-level course in optimization for students in mathematics, operations research, engineering, and others. Moreover, it seems to be very helpful to do some self-studies in optimization, to complete own knowledge and can be a source of new ideas.... I recommend this excellent book to everyone who is interested in optimization problems."
  • Information Theory, Inference and Learning Algorithms

    作者:David J. C. MacKay

    Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
  • Numerical Optimization

    作者:Jorge Nocedal,Stephe

    Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
  • 机器学习

    作者:周志华

    机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.前3章之外的后续各章均相对独立, 读者可根据自己的兴趣和时间情况选择使用. 根据课时情况, 一个学期的本科生课程可考虑讲授前9章或前10章; 研究生课程则不妨使用全书. 书中除第1章外, 每章都给出了十道习题. 有的习题是帮助读者巩固本章学习, 有的是为了引导读者扩展相关知识. 一学期的一般课程可使用这些习题, 再辅以两到三个针对具体数据集的大作业. 带星号的习题则有相当难度, 有些并无现成答案, 谨供富有进取心的读者启发思考. 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
  • Introductory Functional Analysis with Applications

    作者:Erwin Kreyszig

    Provides avenues for applying functional analysis to the practical study of natural sciences as well as mathematics. Contains worked problems on Hilbert space theory and on Banach spaces and emphasizes concepts, principles, methods and major applications of functional analysis.
  • 凸优化

    作者:Stephen Boyd,Lieven

    《信息技术和电气工程学科国际知名教材中译本系列:凸优化》内容非常丰富。理论部分由4章构成,不仅涵盖了凸优化的所有基本概念和主要结果,还详细介绍了几类基本的凸优化问题以及将特殊的优化问题表述为凸优化问题的变换方法,这些内容对灵活运用凸优化知识解决实际问题非常有用。应用部分由3章构成,分别介绍凸优化在解决逼近与拟合、统计估计和几何关系分析这三类实际问题中的应用。算法部分也由3章构成,依次介绍求解无约束凸优化模型、等式约束凸优化模型以及包含不等式约束的凸优化模型的经典数值方法,以及如何利用凸优化理论分析这些方法的收敛性质。通过阅读《信息技术和电气工程学科国际知名教材中译本系列:凸优化》,能够对凸优化理论和方法建立完整的认识。
  • 最优化理论与方法

    作者:袁亚湘

    《最优化理论与方法》全面、系统地介绍了无约束最优化、约束最优化和非光滑最优化的理论和计算方法,它包括了近年来国际上关于优化研究的最新成果。《最优化理论与方法》在经济计划、工程设计、生产管理、交通运输等方面得到了广泛应用。
  • 人工智能

    作者:Stuart J. Russell,Pe

    《人工智能:一种现代的方法(第3版)(影印版)》最权威、最经典的人工智能教材,已被全世界100多个国家的1200多所大学用作教材。《人工智能:一种现代的方法(第3版)(影印版)》的最新版全面而系统地介绍了人工智能的理论和实践,阐述了人工智能领域的核心内容,并深入介绍了各个主要的研究方向。全书仍分为八大部分:第一部分“人工智能”,第二部分“问题求解”,第三部分“知识与推理”,第四部分“规划”,第五部分“不确定知识与推理”,第六部分“学习”,第七部分“通信、感知与行动”,第八部分“结论”。《人工智能:一种现代的方法(第3版)(影印版)》既详细介绍了人工智能的基本概念、思想和算法,还描述了其各个研究方向最前沿的进展,同时收集整理了详实的历史文献与事件。另外,《人工智能:一种现代的方法(第3版)(影印版)》的配套网址为教师和学生提供了大量教学和学习资料。 《人工智能:一种现代的方法(第3版)(影印版)》适合于不同层次和领域的研究人员及学生,是高等院校本科生和研究生人工智能课的首选教材,也是相关领域的科研与工程技术人员的重要参考书。
  • 统计学完全教程

    作者:(美国)L.沃赛曼

    由美国当代著名统计学家L·沃塞曼所著的《统计学元全教程》是一本几乎包含了统计学领域全部知识的优秀教材。本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(自助法)、独立性推断、因果推断、图模型、非参数回归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术。本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养。本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。 本书适用于统计学、数学、计算机科学、机器学习与数据挖掘等领域的高年级本科生、研究生,对于相关领域的广大科研工作者和实际工作者来说也不失为一本有价值的参考书。
  • 统计学习理论

    作者:Vladimir N.vapnik

  • Natural Image Statistics

    作者:Aapo Hyvärinen,Jarmo

    This book is the first comprehensive introduction to the multidisciplinary field of natural image statistics and its intention is to present a general theory of early vision and image processing in a manner that can be approached by readers from a variety of scientific backgrounds. A wealth of relevant background material is presented in the first section as an introduction to the subject. Following this are five unique sections, carefully selected so as to give a clear overview of all the basic theory, as well as the most recent developments and research. This structure, together with the included exercises and computer assignments, also make it an excellent textbook. Natural Image Statistics is a timely and valuable resource for advanced students and researchers in any discipline related to vision, such as neuroscience, computer science, psychology, electrical engineering, cognitive science or statistics.
  • Data Mining

    作者:Jiawei Han,Micheline

    The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
  • Applied Predictive Modeling

    作者:Max Kuhn,Kjell Johns

    This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms.
  • A Probabilistic Theory of Pattern Recognition (Stochastic Modelling and Applied Probability)

    作者:Luc Devroye,Laszlo G

    A self-contained and coherent account of probabilistic techniques, covering: distance measures, kernel rules, nearest neighbour rules, Vapnik-Chervonenkis theory, parametric classification, and feature extraction. Each chapter concludes with problems and exercises to further the readers understanding. Both research workers and graduate students will benefit from this wide-ranging and up-to-date account of a fast- moving field.
  • Machine Learning

    作者:Kevin P. Murphy

    Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.