欢迎来到相识电子书!

标签:algebra

  • Introduction to Linear Algebra, Fourth Edition

    作者:Gilbert Strang

    Gilbert Strang's textbooks have changed the entire approach to learning linear algebra -- away from abstract vector spaces to specific examples of the four fundamental subspaces: the column space and nullspace of A and A'. Introduction to Linear Algebra, Fourth Edition includes challenge problems to complement the review problems that have been highly praised in previous editions. The basic course is followed by seven applications: differential equations, engineering, graph theory, statistics, fourier methods and the FFT, linear programming, and computer graphics. Thousands of teachers in colleges and universities and now high schools are using this book, which truly explains this crucial subject. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.
  • 代数学引论.第二卷,线性代数:第3版

    作者:(俄)A.И.柯斯特利金

    本书是俄罗斯著名代数学家A.и.柯斯特利金的优秀教材《代数学引论》的第二卷。《代数学引论》是作者总结了莫斯科大学几十年来代数课程的教学经验而写成的,全书分成三卷(第一卷:基础代数,第二卷:线性代数,第三卷:基本结构),分别对应于莫斯科大学数学力学系代数教学的三学期的内容。作者在书中把代数、线性代数和几何统一处理成一个教程,并力图把本书写成有利于培养学生创造性思维的教材。书中配置了难度不同的大量习题,并向学生介绍一些专题中尚未解决的问题。. 第二卷的内容包括抽象向量空间的基本概念,双线性型和二次型,线性算子,带有纯量乘积的向量空间,仿射空间与欧几里得点空间,二次曲面,张量。.. 本书可供我国高等院校数学、应用数学专业和相关专业的本科生、研究生、教师用作代数学课程的教学参考书。...
  • Basic Algebra I

    作者:Nathan Jacobson

  • 高等代数学(第2版)

    作者:张贤科,许甫华

    《高等代数学》主要内容为线性代数,包括数与多项式,行列式,线性方程组,矩阵,线性空间,二次型,线性变换,空间分解,矩阵相似,欧空间和酉空间,双线性型;选学内容有正交几何与辛几何,Hilbert空间,张量积与外积等.内容较深厚,便于读者打下优势基础;观点较新,便于读者适应现代数学.还有若干介绍性内容.可作为高校数学、物理、计算机与电子信息等理工专业的教材,或供其他专业参阅。
  • 代数学(第1卷)

    作者:范德瓦尔登

    本书特色:抽象与具体结合,理论与应用结合。目前的代数书,常常单线地朝抽象方向发展,使读者--甚至一些数学家们--觉得代数学是抽象概念的游戏。各种数学理论的平行发展,到了代数学中,取得了整合与统一。
  • 代数(英文版)

    作者:[美]Michael Artin

    本书由著名代数学家与代数几何学家Michael Artin所著,是作者在代数领域数十年的智慧和经验的结晶。书中既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容,又介绍了环、模型、域,伽罗瓦理论等较为高深的内容,本书对于提高数学理解能力。增强对代数的兴趣是非常有益处的。此外,本书的可阅读性强,书中的习题也很有针对性,能让读者很快地掌握分析和思考的方法。 本书在麻省理工学院、普林斯顿大学、哥伦比亚大学等著名学府得到了广泛采用,是代数学的经典教材之一。
  • 代数学基础

    作者:沙法列维奇

    《代数学基础(影印版)》论述代数学及其在现代数学和科学中的地位,高度原创且内容充实。作者通过讨论大学代数课程,如李群、上同调、范畴论等,阐述每个代数概念的起源与物理现象及其他数学分支之间的联系。《代数学基础(影印版)》为数学家必读,无论他是初学代数学还是代数学专家。
  • 代数

    作者:SERGE LANG

    《代数》(第3版):As I see it, the graduate course in algebra must primarily prepare studentsto handle the algebra which they will meet in all of mathematics: topology,partial differential equations, differential geometry, algebraic geometry, analysis,and representation theory, not to speak of algebra itself and algebraic numbertheory with all its ramifications. Hence I have inserted throughout references topapers and books which have appeared during the last decades, to indicate someof the directions in which the algebraic foundations provided by this book areused; I have accompanied these references with some motivating comments, toexplain how the topics of the present book fit into the mathematics that is tocome subsequently in various fields; and I have also mentioned some unsolvedproblems of mathematics in algebra and number theory. The abc conjecture isperhaps the most spectacular of these.
  • Introduction To Commutative Algebra

    作者:Michael Atiyah,Ian M

    This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
  • 代数

    作者:(美) Michael Artin

    本书由著名代数学家与代数几何学家Michael Artin所著,是作者在代数领域数十年的智慧和经验的结晶。书中既介绍了矩阵运算、群、向量空间、线性算子、对称等较为基本的内容,又介绍了环、模型、域、伽罗瓦理论等较为高深的内容。本书对于提高数学理解能力,增强对代数的兴趣是非常有益处的。此外,本书的可阅读性强,书中的习题也很有针对性,能让读者很快地掌握分析和思考的方法。 作者结合这20年来的教学经历及读者的反馈,对本版进行了全面更新,更强调对称性、线性群、二次数域和格等具体主题。本版的具体更新情况如下:  新增球面、乘积环和因式分解的计算方法等内容,并补充给出一些结论的证明,如交错群是简单的、柯西定理、分裂定理等。  修订了对对应定理、SU2 表示、正交关系等内容的讨论,并把线性变换和因子分解都拆分为两章来介绍。  新增大量习题,并用星号标注出具有挑战性的习题。 本书在麻省理工学院、普林斯顿大学、哥伦比亚大学等著名学府得到了广泛采用,是代数学的经典教材之一。
  • Linear Algebra Done Right

    作者:Sheldon Axler

    This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
  • 矩阵分析

    作者:(美)合恩(Horn/R.A.)等/杨奇

    《华章数学译丛:矩阵分析(原书第2版)》从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等,新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范数等相关的小节,扩展了与逆矩阵和矩阵块相关的内容,对基础线性代数和矩阵理论作了全面总结,有1100多个问题,并给出一些问题的提示,还有很详细的索引。
  • 线性代数

    作者:[美] 利昂 Steven J.Leon

    据原书第7版译出。本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了MATLAB练习题和测试题。.本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。..随着计算机技术的发展,线性代数课程的重要性越来越突出。同时,现代软件技术已经为显著改进授课方式提供了可能。本书作者多年讲授线性代数课程,并在教学过程中不断探索更利于学生理解的新教学方法,从而使本书更加适合作为线性代数课程的教材。
  • 线性代数应该这样学

    作者:Sheldon Axler

    描述线性算子的结构是线性代数的中心任务之一,传统的方法多以行列式为工具,但是行列式既难懂又不直观,其定义的引入也往往缺乏动因。本书作者独辟蹊径,抛弃了这种曲折的思路,把重点放在抽象的向量空间和线性映射上,给出的证明不使用行列式,更显得简单而直观。本书把行列式的内容放在了最后讲解,开辟了一条理解线性算子结构的新途径。书中还对一些术语、结论、证明思路、提及的数学家做了注释,增加了行文的趣味性,便于读者掌握核心概念和思想方法。 本书起点较低,不需要太多预备知识,而特色鲜明,是公认的阐述线性代数的经典佳作。原书自出版以来,迅速风靡世界,在30多个国家为200多所高校所采用,其中包括斯坦福大学和加州大学伯克利分校等著名学府。