欢迎来到相识电子书!

标签:矩阵

  • 矩阵计算

    作者:[美] Gene H. Golub,[美

    本书是数值计算领域的名著,系统介绍了矩阵计算的基本理论和方法。内容包括:矩阵乘法、矩阵分析、线性方程组、正交化和最小二乘法、特征值问题、Lanczos 方法、矩阵函数及专题讨论等。书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献。新版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。 本书可作为高等院校数学系高年级本科生和研究生教材,亦可作为计算数学和工程技术人员参考书。
  • 矩阵计算

    作者:

  • Matrix Computations

    作者:Gene H. Golub,Charle

    Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.
  • 矩阵分析与应用

    作者:张贤达

    《矩阵分析与应用》(精装)将矩阵的分析分为梯度分析、奇异值分析、特征分析、子空间分析与投影分析五大部分,以一种新的体系、系统、全面地介绍矩阵分析的主要理论、方法及应用。全书共10章,内容包括矩阵与线性方程组、特殊矩阵、Toeplitz矩阵、矩阵的变换与分解、梯度分析与最优化、奇异值分析、总体最小二乘方法、特征分析、子空间分析、投影分析。《矩阵分析与应用》(精装)取材广泛,内容新颖,理论与应用密切结合。书中介绍了矩阵分析的丰富理论和大量生动应用,可以帮助读者学会如何使用矩阵这一重要数学工具,灵活解决科学和工程技术中的大量问题。
  • 矩阵分析

    作者:[美] Roger A.Horn, Ch

    有:特征值、特征向量和相似性、酉相似、Schur三角化及其推论、正规矩阵、标准形和包括Jordan标准形在内的各种分解、LU分解、QR分解和酉矩阵、Hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 《矩阵分析.卷1(英文版)(本科)》可作为理工科专业研究生或数学专业高年级本科生教材,也可供数学工作者和科技人员参考。
  • 矩阵计算

    作者:Gene H.Golub,Charles

    本书是国际上数值计算方面的权威著作,有“圣经”之称。被美国加州大学、斯坦福大学、华盛顿大学、芝加哥大学、中国科学院研究生院等很多世界知名学府用作相关课程的教材或主要参考书。 本书系统地介绍了矩阵计算的基本理论和方法。书中的许多算法都有现成的软件包实现,每节后还附有习题,并有注释和大量参考文献,非常有助于自学。
  • 矩阵计算

    作者:Gene H. Golub,Charle

    本书是国际上数值计算方面的权威著作,有“圣经”之称。被美国加州大学、斯坦福大学、华盛顿大学、芝加哥大学、中国科学院研究生院等很多世界知名学府用作相关课程的教材或主要参考书。 本书系统地介绍了矩阵计算的基本理论和方法。书中的许多算法都有现成的软件包实现,每节后还附有习题,并有注释和大量参考文献,非常有助于自学。
  • 矩阵分析

    作者:(美)合恩(Horn/R.A.)等/杨奇

    《华章数学译丛:矩阵分析(原书第2版)》从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等,新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范数等相关的小节,扩展了与逆矩阵和矩阵块相关的内容,对基础线性代数和矩阵理论作了全面总结,有1100多个问题,并给出一些问题的提示,还有很详细的索引。