欢迎来到相识电子书!

标签:线性代数与矩阵论

  • 线性代数与矩阵论

    作者:许以超

    《线性代数与矩阵论》是将矩阵论和线性空间理论溶合在一起编写的。先以中学时熟悉的多项式为基础,将多项式理论交代清楚。接下去讲多元多项式。然后是矩阵论和线性空间理论的基本工具:行列式、矩阵以及线性方程组求解理论。从而引进线性空间、线性不等式和它上面的线性变换,以及求复方阵的Jordan标准形的代数理论和几何解释,Jordan标准形的应用,它包含了方阵函数和方阵在复相似下的标准型理论。给出了线性函数和它的推广,即多重线性函数,Grassmann代数以及张量场。接着转向内积空间(即实和复Euclid空间的结构和二次型的分类)。最后三章是广义逆矩阵的几何基础和矩阵处理,非负矩阵的基本性质和复矩阵偶在相抵下的标准形。《线性代数与矩阵论》的特点是充分发挥矩阵技巧在矩阵论和线性空间理论中的应用,涉及面也比较广。《线性代数与矩阵论》的另一个特点是书中的例题和习题比较难一点,虽然《线性代数与矩阵论》的一些习题已经被一些作者选为例题,但是《线性代数与矩阵论》的目的是使同学有一个良好的严格训练环境,可以自由地选择这些习题来做。
  • 矩阵分析与应用

    作者:张贤达

    《矩阵分析与应用》(精装)将矩阵的分析分为梯度分析、奇异值分析、特征分析、子空间分析与投影分析五大部分,以一种新的体系、系统、全面地介绍矩阵分析的主要理论、方法及应用。全书共10章,内容包括矩阵与线性方程组、特殊矩阵、Toeplitz矩阵、矩阵的变换与分解、梯度分析与最优化、奇异值分析、总体最小二乘方法、特征分析、子空间分析、投影分析。《矩阵分析与应用》(精装)取材广泛,内容新颖,理论与应用密切结合。书中介绍了矩阵分析的丰富理论和大量生动应用,可以帮助读者学会如何使用矩阵这一重要数学工具,灵活解决科学和工程技术中的大量问题。
  • 矩阵分析

    作者:(美)合恩(Horn/R.A.)等/杨奇

    《华章数学译丛:矩阵分析(原书第2版)》从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等,新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范数等相关的小节,扩展了与逆矩阵和矩阵块相关的内容,对基础线性代数和矩阵理论作了全面总结,有1100多个问题,并给出一些问题的提示,还有很详细的索引。