欢迎来到相识电子书!
标签:泛函分析
-
线性泛函分析
本书以较小的篇幅介绍了线性泛函分析的基本内容:赋范空间和Banach空间,内积空间和Hilbert空间,线性算子,紧算子及其在积分方程和微分方程中的应用。本书内容深入浅出、通俗易懂,重要的概念和定理均有背景介绍,并配有简单例子加以解释;排版层次分明、结构清晰;书的末尾配有习题解答。 本书适合大学高年级学生以及研究生自学或作为教材使用。 -
实变函数与泛函分析基础
本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。 这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。 《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。 -
泛函分析学习指南
《泛函分析学习指南》是高等院校高年级本科生泛函分析课程的辅导教材,可与国内通用的泛函分析教材同步使用,特别适合于作为《泛函分析讲义(上册)》(张恭庆、林源渠编著,北京大学出版社)的配套辅导教材。共分四章,内容包括度量空间、线性算子与线性泛函、广义函数与索伯列夫空间、紧算子与Fredholm算子。每小节按基本内容、典型例题精解两部分编写。基本内容简明介绍了读者应掌握的基础知识;典型例题精解按照基础题、规范题、综合题三种类型,从易到难,循序渐进,详细讲述例题的解法,并对解题方法进行归纳和总结,以帮助学生克服由于不适应泛函分析中全新的研究对象和处理问题的方法所产生的困惑,同时也为任课教师提供一些便利条件。 -
Functional Analysis (Pure and Applied Mathematics
Includes sections on the spectral resolution and spectral representation of self adjoint operators, invariant subspaces, strongly continuous one-parameter semigroups, the index of operators, the trace formula of Lidskii, the Fredholm determinant, and more. * Assumes prior knowledge of Naive set theory, linear algebra, point set topology, basic complex variable, and real variables. * Includes an appendix on the Riesz representation theorem. -
实变函数论与泛函分析
《实变函数论与泛函分析:下册•第2版修订本》第一版在1978年出版。此次修订,是编者在经过两次教学实践的基础上,结合一些学校使用第一版所提出的意见进行的。《实变函数论与泛函分析:下册•第2版修订本》第二版仍分上、下两册出版。上册实变函数,下册泛函分析。本版对初版具体内容处理的技术方面进行了较全面的细致修订。下册内容的变动有:在第六章新增了算子的扩张与膨胀理论一节,对其他一些章节也补充了材料。各章均补充了大量具有一定特色的习题。 《实变函数论与泛函分析:下册•第2版修订本》可作理科数学专业,计算数学专业学生教材和研究生的参考书。 《实变函数论与泛函分析:下册•第2版修订本》下册经王建午副教授初审,江泽坚教授复审,在初审过程中,陈杰教授给予甚大关注。 -
泛函分析讲义(下册)
这是一部泛函分析教材,它系统地介绍线性算子理论的基础知识,算子半群以及连续函数空间上的Wiener测度和Hilbert空间上的Gauss测度。全书共分四章:Banach代数;无界算子;算子半群以及无穷维空间上的测度论。《泛函分析讲义(下)》注意介绍泛函分析理论与数学其他分支的密切联系,给出丰富的例子和应用,以培养读者运用泛函分析方法解决问题的能力。 《泛函分析讲义(下)》适用于理工科大学数学系、应用数学系高年级本科生、研究生阅读,并且可供一般的数学工作者、物理工作者和科学技术人员参考。 -
泛函分析
he present book is based on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i.e., the general theory of linear operators infunction spaces together with salient features of its application to diverse fields of modem and classical analysis. Necessary prerequisites for the reading of this book are summarized,with or without proof, in Chapter 0 under titles: Set Theory, Topological Spaces, Measure Spaces and Linear Spaces. Then, starting with the chapter on Semi-norms, a general theory of Banach and Hilbert spaces is presented in connection with the theory of generalized functions of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed to graduate students, it is hoped it might prove useful to research mathematicians, both pure and applied. The reader may pass, e.g., fromChapter IX (Analytical Theory. of Semi-groups) directly to Chapter XIII (Ergodic Theory and Diffusion Theory) and to Chapter XIV (Integration of the Equation of Evolution). Such materials as "Weak Topologies and Duality in Locally Convex Spaces" and "Nuclear Spaces" are presented in the form of the appendices to Chapter V and Chapter X,respectively. These might be skipped for the first reading by those who are interested rather in the application of linear operators. -
Introductory Functional Analysis with Applications
Provides avenues for applying functional analysis to the practical study of natural sciences as well as mathematics. Contains worked problems on Hilbert space theory and on Banach spaces and emphasizes concepts, principles, methods and major applications of functional analysis. -
实变函数论与泛函分析
《实变函数论与泛函分析:上册•第2版修订本》内容简介:本版保持了初版的思想体系和基本结构,从局部来看作了一定程度的修改。在编写初版时,我们对《实变函数论与泛函分析:上册•第2版修订本》编写的思想体系和基本结构给予了较多的考虑。但由于某些内容过去就很少有作为基础课讲授的教学经验,另一方面也由于当时编写时间比较仓促,因此从具体内容处理的技术方面来看,确有必要进行一次较全面的、细致的修订。本次修订,是在作者对初版进行了两次教学实践和兄弟院校使用初版后提出意见的基础上进行的。 -
泛函分析讲义(上册)
这是一部泛函分析教材。它系统地介绍线性泛函分析的基础知识。全书共分四章: 度量空间;线性算子与线性泛函;广义函数与Coболев空间;以及紧算子与Fredholm算子。《泛函分析讲义(上)》的主要特点是它侧重于分析若干基本概念和重要理论的来源和背景,强调培养读者运用泛函方法解决问题的能力,注意介绍泛函分析理论与数学其它分支的联系。书中包含丰富的例子与应用,对于掌握基础理论有很大帮助。此书适用于理工科大学本科生与研究生阅读,并且可供一般的数学工作者、物理工作者、工程技术人员参考。为便于读者学习,本次重印书末增加了习题补充提示和索引,以供读者参考。 -
函数论与泛函分析初步
《函数论与泛函分析初步(第7版)》是世界著名数学家A.H.柯尔莫戈洛夫院士在莫斯科大学数学力学系多年讲授泛函分析教程(曾称《数学分析Ⅲ》)的基础上编写的。《函数论与泛函分析初步(第7版)》是关于泛函分析与实变函数论的精细问题的严格的系统阐述,书中反映了作者的教育思想,体现了作者丰富的教学经验与方法。内容包括:集合论初步,度量空间与拓扑空间,赋范线性空间与线性拓扑空间,线性泛函与线性算子,测度、可测函数、积分,勒贝格不定积分、微分论,可和函数空间,三角函数傅里叶变换,线性积分方程,线性空间微分学概要以及附录的巴拿赫代数。 《函数论与泛函分析初步(第7版)》适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。 -
泛函分析
《泛函分析》(原书第2版)是泛函数分析的经典教材,作为Rudin的分析学经典著作之一,《泛函分析》(原书第2版)秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理,Lamonosov不变子空间定理以及遍历定理等,另外,还适当增加了一些例子和习题。 -
谱理论讲义
《谱理论讲义》最早是J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义。在相当长的一段时期里,本讲义在法国被这一领域的所有学生认真反复阅读,也为教授这一课程的教师大量使用。在这本讲义里,迪斯米埃以完整地陈述谱定理为核心目的。通过最基本也是最常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用他的各种技巧对定理给出精确、简短而优雅的证明——这就是Bourbaki成员的作品。而《谱理论讲义》中体系的严谨与清晰明了则是作者一贯的写作风格。 -
泛函分析
《泛函分析(英文版)》是Stein的“PrincetonLecturesinAnalysis”四卷中的最后一卷,教科书旨在全面剖析分析的核心,从泛函分析的基础开始,讲述巴纳赫空间、Lp空间和分布理论,强调了它们在调和分析中的核心地位。 -
泛函分析
《泛函分析》(英文版)(第2版)作为Rudin的分析学经典著作之一,《泛函分析》(英文版)(第2版)秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理、Lamonosov不变子空间定理以及遍历定理等。另外,还适当增加了一些例子和习题。 -
Functional Analysis
This is the fourth and final volume in the Princeton Lectures in Analysis, a series of textbooks that aim to present, in an integrated manner, the core areas of analysis. Beginning with the basic facts of functional analysis, this volume looks at Banach spaces, Lp spaces, and distribution theory, and highlights their roles in harmonic analysis. The authors then use the Baire category theorem to illustrate several points, including the existence of Besicovitch sets. The second half of the book introduces readers to other central topics in analysis, such as probability theory and Brownian motion, which culminates in the solution of Dirichlet's problem. The concluding chapters explore several complex variables and oscillatory integrals in Fourier analysis, and illustrate applications to such diverse areas as nonlinear dispersion equations and the problem of counting lattice points. Throughout the book, the authors focus on key results in each area and stress the organic unity of the subject. -
泛函分析(影印版)
《泛函分析(影印版)》是美国科学院院士Peter D.Lax在CotJrant数学所长期讲授泛函分析课程的教学经验基础上编写的。《泛函分析(影印版)》包括泛函分析的基本内容:Barlach空间、Hilbert空间和线性拓扑空间的基本概念和性质,线性拓扑空间中的凸集及其端点集的性质,有界线性算子的性质等。可作为本科生泛函分析课的教学内容;还包括泛函分析较深的内容:自伴算子的谱分解理论。紧算子的理论,交换Barlach代数的Gelfand理论,不变子空间的理论等。可作为研究生泛函分析课的教学内容。《泛函分析(影印版)》特别强调泛函分析与其他数学分支的联系及泛函分析理论的应用,可以使读者深刻地理解到:抽象的泛函分析理论有着丰富的数学背景。
热门标签
下载排行榜
- 1 梦的解析:最佳译本
- 2 李鸿章全传
- 3 淡定的智慧
- 4 心理操控术
- 5 哈佛口才课
- 6 俗世奇人
- 7 日瓦戈医生
- 8 笑死你的逻辑学
- 9 历史老师没教过的历史
- 10 1分钟和陌生人成为朋友