欢迎来到相识电子书!

标签:数学物理

  • Analysis, Manifolds and Physics. Revised Edition

    作者:Yvonne Choquet-Bruha

    This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled "Connections on Principle Fibre Bundles" which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.
  • Quantum Fields and Strings

    作者:Pierre Deligne

  • 数学物理(第1卷)

    作者:哈萨尼

    《数学物理(第1卷)(英文版)》是为学习物理学的读者编写的数学基础教材,不仅如此,《数学物理(第1卷)(英文版)》还对那些学习数学的人们非常有益,即可以将抽象思维化为活龙活现的应用。现有的数学物理方法著作,通常是像词典那样将诸如矩阵对角化、张量分析、Legendre多项式和各种各样的积分公式等汇集起来,很少强调主题的系统发展,因而缺乏生气;《数学物理(第1卷)(英文版)》则不同,作者试图在形式和应用上、抽象化和具体问题上达到一种平衡,为了使内容编排最优化和自成一体,《数学物理(第1卷)(英文版)》尽可能多地引入必要的数学形式,这自然包括大量的定量、性质、引理和推论的陈述和证明,以及丰富多样的练习题。同时,作者希望通过学习《数学物理(第1卷)(英文版)》,读者能够很清楚地发现在物理学中使用数学思想及方法的威力和局限性,这些都是许多物理学和数学教程中很少能明确指出的。《数学物理(第1卷)(英文版)》的另一个突出特点是,除了用较现代的方法处理经典的数学物理问题外,还引入了很多有较强物理应用意义的较现代的数学方法和思想,从涵盖的知识面来看,已远远超出通常数学物理方法教程的范围,因此可以供更大范围的读者来参考选用。值得一提的是,《数学物理(第1卷)(英文版)》还将一些近现代的著名科学家的小传及照片穿插于全书各处,这使得《数学物理(第1卷)(英文版)》生色不少。 如果说数学是大自然的语言,那么,物理学就是大自然的诗歌。数学是物理学的出色工具,数学是物理学唯一能够表达自己且不失真确性的语言。另外,数学在物理学中的应用也富有戏剧性的发展。
  • 量子数学物理

    作者:Walter Thirring

    《量子数学物理(第2版)》是Walter Thirring的早期两卷分子和原子量子力学和大系统量子力学的结合,是Walter Thirring的著名数学物理系列教材的第3,4卷的新版本。现在的这个版本已经很成熟,也很经典,重点突出,清晰易懂。可以作为高年级本科生以及本科生教材,也是一本很好的科研和教师参考书。全书内容分两部分。第1部分主要讲述量子力学,特别是其在散射理论、原子以及分子中的应用。第2部分深入研究量子统计力学对基本概念的检验,例如熵、遍历性以及热动力函数等。《量子数学物理(第2版)》的起点低,完全是建立在基本概念的基础上。数学的工具主要是运用泛函分析,例如,Hilbert空间上的有界算子、无界算子、算子代数等。这也为检验实验中的数字数据提供了正确的工具。
  • Mathematics of Classical and Quantum Physics(Revised ed)

    作者:Frederick W. Byron,R

    Well-organized text designed to complement graduate-level physics texts in classical mechanics, electricity, magnetism, and quantum mec hanics. Topics include theory of vector spaces, analytic function theory, Green's function method of solving differential and partial differential equations, theory of groups, more. Many problems, suggestions for further reading. This textbook is designed to complement graduate-level physics texts in classical mechanics, electricity, magnetism, and quantum mechanics. Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics. Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text. Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.
  • Mirror Symmetry

    作者:Kentaro Hori

  • 数学物理方法

    作者:梁昆淼 编,刘法 缪国庆 修订

    《数学物理方法(第4版)》是在第三版的基础上,根据当前的教学实践情况修订而成的。全书南复变函数论、数学物理方程两部分组成,以常见物理问题中三类偏微分方程定解问题的建立和求解为中心内容。《数学物理方法(第4版)》保持了前三版数学紧密联系物理、讲解流畅的特点,并对内容作了适度的调整,以适应当前的要求。 《数学物理方法(第4版)》可作为高等院校物理类、电子工程类各专业“数学物理方法”课程的教材.亦可供高等学校的其他有关专业选用。
  • Geometry, Topology and Physics, Second Edition

    作者:Mikio Nakahara

    Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics."Geometry, Topology and Physics, Second Edition" introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems.New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. "Geometry, Topology and Physics, Second Edition" is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
  • 特殊函数概论

    作者:王竹溪,郭敦仁

    《特殊函数概论》较系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐进展开,线性常微分方程的级数解法和积分解法等,在各章之末还附有习题,习题中包含了一些有用的公式作为《特殊函数概论》正文的补充。
  • 数学物理方法 I

    作者:[德]R.柯朗,[德]D.希尔伯特

    《数学物理方法》系一经典名著。《数学物理方法》系统地提供了为解决各种重要物理问题所需的基本数学方法。全书分三卷出版。本书为《数学物理方法I》,由R.柯朗和D.希尔伯特编写,内容包括:线性代数和二次型、任意函数的级数展开、线性积分方程、变分法、振动和本征 值问题、变分法在 本征值问题上的应用以及本征值问题所定义的特殊函数。《数学物理方法I》可以作为高等学校“数学物理”课程的教科书;对理论物理学工作者,它也是一本有用的参考书。
  • The Road to Reality

    作者:Roger Penrose

    From one of our greatest living scientists, a magnificent book that provides, for the serious lay reader, the most comprehensive and sophisticated account we have yet had of the physical universe and the essentials of its underlying mathematical theory. Since the earliest efforts of the ancient Greeks to find order amid the chaos around us, there has been continual accelerated progress toward understanding the laws that govern our universe. And the particularly important advances made by means of the revolutionary theories of relativity and quantum mechanics have deeply altered our vision of the cosmos and provided us with models of unprecedented accuracy. What Roger Penrose so brilliantly accomplishes in this book is threefold. First, he gives us an overall narrative description of our present understanding of the universe and its physical behaviors–from the unseeable, minuscule movement of the subatomic particle to the journeys of the planets and the stars in the vastness of time and space. Second, he evokes the extraordinary beauty that lies in the mysterious and profound relationships between these physical behaviors and the subtle mathematical ideas that explain and interpret them. Third, Penrose comes to the arresting conclusion–as he explores the compatibility of the two grand classic theories of modern physics–that Einstein’s general theory of relativity stands firm while quantum theory, as presently constituted, still needs refashioning. Along the way, he talks about a wealth of issues, controversies, and phenomena; about the roles of various kinds of numbers in physics, ideas of calculus and modern geometry, visions of infinity, the big bang, black holes, the profound challenge of the second law of thermodynamics, string and M theory, loop quantum gravity, twistors, and educated guesses about science in the near future. In The Road to Reality he has given us a work of enormous scope, intention, and achievement–a complete and essential work of science 从古希腊人探寻我们身边的秩序与混沌的最早期的努力开始,人们对支配着我们生活的宇宙的法则的理解也在不断加速。而通过相对论与量子力学这样的革命性理论而取得的重要进展,已经深刻地改变了我们观察宇宙的视野。在这本书中,作者Roger Penrose首先对我们目前对宇宙的理解给出一个全面的概述,从我们看不到的亚原子粒子的微小运动到漫天星斗的运行。在物质的世界与用以解释和描述它们的微妙的数理概念之间存在一种关系,揭示这一关系中所呈现的美是作者接下来要做的事。在此基础上,作者又进而对现有的理论加以思考。依着这一思路,他在此书讨论了大量的问题、争论以及现象,不仅是前面提到的相对论,还包括正诱惑着科学家们智慧的膜理论等。作者彭罗斯早已为中国读者所熟悉,他曾于1988年与霍金共同分享当年授予物理学家的沃尔夫奖。他的作品《皇帝新脑》、《时空本性》(与霍金合著)此前曾在我国翻译出版。来自《星期天泰晤士报》的评论说,彭罗斯的书揭示了纠结在自然与人类想像力之间的美与精妙之处。
  • 经典力学的数学方法

    作者:V.I.Arnold

    Part of Preface to the second edition The main part of this book was written twenty years ago. The ideas and methods of symplectic geometry, developed in this book, have now found many applications in mathematical physics and in other domains of applied mathematics, as well as in pure mathematics itself. Especially, the theory of short wave asymptotic expansions has reached a very sophiscated level, with many important applications to optics, wave theory, acoustics, spectroscopy, and even chemistry; this development was parallel to the development of the theories of Lagrange and Legendre singularities, that is, of singularities of caustics and of wave fronts, of their topology and their perestroikas (in Russian metamorphoses were always called "perestroikas," as in "Morse perestroika" for the English "Morse surgery"; now that the word perestroika has become international, we may preserve the Russian term in translation and are not obliged to substitute "metamorphoses" for "perestroikas" when speaking of wave fronts, caustics, and so on.
  • 数学物理方法

    作者:梁昆淼 编,刘法 缪国庆 修订

    本书系在第二版的基础上,根据当前的教学实际修订而成的。全书包括复变函数论,数学物理方程两部分,以数学物理中的偏微分方程定解问题的建立和求解为中心。本书保持了前两版教学紧密联系物理、讲解流畅的特点,并对内容做了适度精简。 本书可以作为综合大学、高等师范院校物理类各专业“数学物理方法”课程的教材,亦可共高等工科院校有关专业选用。
  • 经典力学的数学方法

    作者:[俄] В. И. 阿诺尔德

    《经典力学的数学方法(第4版)》以最优美的现代数学形式讨论经典力学问题,它本是数学或力学专业的学生学习理论力学的教材,但实际上。它的范围已经远远超越理论力学,是现代数学的一个重要方面——辛几何。原书被译为多国文字出版,并由Springer收入GTM丛书,以英文广泛发行。本书已修订为第4版,主要内容包括牛顿力学、拉格朗日力学和哈密顿力学三大部分,通过经典力学的数学工具,考察了动力学的所有基本问题。特别是16个附录,使原书的主题更为鲜明:辛几何与辛拓扑,它们反映了几十年来数学科学在一个方面的发展。这些附录都属于专题介绍性质,是作者和他的学生们在有关方面近年来研究工作的总结。 《经典力学的数学方法(第4版)》可供高等学校数学、物理、力学及相关专业的本科生、研究生、教师,以及相关领域的研究人员参考使用。本书由阿诺尔德著。
  • 微分方程、动力系统与混沌导论

    作者:Smale, Stephen,Devan

    微分方程动力系统与混沌导论(第二版),ISBN:9787115172181,作者:(美国)赫希、(美国)斯梅尔 著;甘少波 译