欢迎来到相识电子书!

标签:神经网络

  • 神经网络与深度学习

    作者:邱锡鹏

    复旦大学邱锡鹏老师在 Github 上开放的深度学习书籍

    https://nndl.github.io/

    https://github.com/nndl/nndl.github.io

  • 数据挖掘导论

    作者:Pang-Ning Tan, Micha

    本书全面介绍了数据挖掘的理论和方法,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。本书涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。此外,书中还提供了大量示例、图表和习题。 本书适合作为相关专业高年级本科生和研究生数据挖掘课程的教材,同时也可作为数据挖掘研究和应用开发人员的参考书。
  • Neural Networks for Applied Sciences and Engineering

    作者:Samarasinghe, Sandhy

    In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts. It contains an overview of neural network architectures for practical data analysis followed by extensive step-by-step coverage on linear networks, as well as, multi-layer perceptron for nonlinear prediction and classification explaining all stages of processing and model development illustrated through practical examples and case studies. Later chapters present an extensive coverage on Self Organizing Maps for nonlinear data clustering, recurrent networks for linear nonlinear time series forecasting, and other network types suitable for scientific data analysis. With an easy to understand format using extensive graphical illustrations and multidisciplinary scientific context, this book fills the gap in the market for neural networks for multi-dimensional scientific data, and relates neural networks to statistics. Features x Explains neural networks in a multi-disciplinary context x Uses extensive graphical illustrations to explain complex mathematical concepts for quick and easy understanding ? Examines in-depth neural networks for linear and nonlinear prediction, classification, clustering and forecasting x Illustrates all stages of model development and interpretation of results, including data preprocessing, data dimensionality reduction, input selection, model development and validation, model uncertainty assessment, sensitivity analyses on inputs, errors and model parameters Sandhya Samarasinghe obtained her MSc in Mechanical Engineering from Lumumba University in Russia and an MS and PhD in Engineering from Virginia Tech, USA. Her neural networks research focuses on theoretical understanding and advancements as well as practical implementations.
  • Learning Deep Architectures for AI

    作者:Bengio, Yoshua

    Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g., in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the stateof- the-art in certain areas. This monograph discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
  • 神经网络在应用科学和工程中的应用

    作者:萨马拉辛荷

    《神经网络在应用科学与工程中的应用:从基本原理到复杂的模式识别》为读者提供了神经网络方面简单但却系统的介绍。 《神经网络在应用科学和工程中的应用从基本原理到复杂的模式识别》以神经网络在科学数据分析中所扮演角色的介绍性讨论作为开始,给出了神经网络的基本概念。《神经网络在应用科学和工程中的应用从基本原理到复杂的模式识别》首先对用于实际数据分析的神经网络结构进行了综合概述,继而对线性网络进行了大量的介绍,并介绍了所有处理阶段的用于非线性预报和分类的多层感知器。此外,还通过实际例子和个案研究阐述了模型开发技术。后面章节又提出了用于非线性数据聚类的自组织映射、用于线性或非线性时间序列预测的递归网络和适用于科学数据分析的其他类型的网络。 《神经网络在应用科学和工程中的应用从基本原理到复杂的模式识别》通过使用广泛的图示和多学科的内容以一种更容易理解的形式,填补了市场上神经网络用于多维科学数据的空白,并将神经网络与统计学联系了起来。 国际视野,科技前沿。 国际电气工程先进技术译丛,传播国际最新技术成果,搭建电气工程技术平台。 《神经网络在应用科学和工程中的应用从基本原理到复杂的模式识别》特点: ◆在多学科领域解释了神经网络; ◆为了易于理解,使用了大量图例来解释复杂数据概念; ◆深入研究了神经网络在线性和非线性预报、分类,聚类和预测方面的应用; ◆阐述了模型开发的所有阶段和结果的解释,包括数据预处理,数据维数约简,输入选择,模型开发和验证,模型不确定性评估以及对输入、误差和模型参数的灵敏度分析。
  • 神经网络与机器学习

    作者:(加)海金

    《神经网络与机器学习(英文版第3版)》的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是SimonHaykin的《神经网络原理》(第4版更名为《神经网络与机器学习》)。在《神经网络与机器学习(英文版第3版)》中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面。系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。《神经网络与机器学习(英文版第3版)》不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题中的应用。 本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。
  • MATLAB神经网络原理与实例精解

    作者:陈明

    陈明等编著的《MATLAB神经网络原理与实例精解(附光盘)》结合科研和高校教学的相关课程,全面、系统、详细地介绍了MATLAB神经网络的原理及应用,并给出了大量典型的实例供读者参考。本书附带1张光盘,收录了本书重点内容的配套多媒体教学视频及书中涉及的实例源文件。这些资料可以大大方便读者高效、直观地学习本书内容。 《MATLAB神经网络原理与实例精解(附光盘)》首先简要介绍了MATLAB软件的使用和常用的内置函数,随后分门别类地介绍了BP网络、径向基网络、自组织网络、反馈网络等不同类型的神经网络,并在每章的最后给出了实例。在全书的最后,又以专门的一章收集了MATLAB神经网络在图像、工业、金融、体育等不同领域的具体应用,具有很高的理论和使用价值。全书内容详实、重点突出,从三个层次循序渐进地利用实例讲解网络原理和使用方法,降低了学习门槛,使看似神秘高深的神经网络算法更为简单易学。 本书适合学习神经网络的人员使用MATLAB方便地实现神经网络以解决实际问题,也适合神经网络或机器学习算法的研究者及MATLAB进阶学习者阅读。另外,本书可以作为高校相关课程的教材和教学参考书。
  • 神经网络与机器学习(原书第3版)

    作者:[加] Simon Haykin

    神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。 本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。 本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。 本书特色: 1. 基于随机梯度下降的在线学习算法;小规模和大规模学习问题。 2. 核方法,包括支持向量机和表达定理。 3. 信息论学习模型,包括连接、独立分量分析(ICA)、一致独立分量分析和信息瓶颈。 4. 随机动态规划,包括逼近和神经动态规划。 5. 逐次状态估计算法,包括卡尔曼和粒子滤波器。 6. 利用逐次状态估计算法训练递归神经网络。 7. 富有洞察力的面向计算机的试验。
  • 神经计算原理

    作者:哈姆

    《神经计算原理》比较系统全面地介绍了人工神经网络的理论和实际应用,特别在神经网络模型和工程应用方面有极为深入的分析和讲解。全书不仅深入分析神经网络的基本概念,而且详细介绍神经网络应用方面的最新发展趋势和主要研究方向。《神经计算原理》理论和实际应用紧密结合,为神经网络的相关理论知识在具体问题中的应用打下了坚实的基础。
  • 人工神经网络导论

    作者:蒋宗礼

    《人工神经网络导论》依照简明易懂、便于软件实现、鼓励探索的原则介绍人工神经网络。内容包括:智能系统描述模型,人工神经网络方法的特点;基本人工神经元模型,人工神经网络的基本拓扑特性,存储性能及学习;感知器与线性不可分问题,Ifcc学习律,Efmub规则;CQ算法及其原理分析,算法改进讨论;对传网的结构及其运行,对传网的初始化与训练算法;统计网络的训练与收敛性分析;Ipgjqfme 网络及稳定性,Boltzmann 机;双联存储网络的结构及训练;BSU 模型的结构分析与实现。 《人工神经网络导论》适合于研究生和本科高年级学生使用,也可供有关学生、科技人员参考。
  • 人工智能

    作者:耐格纳威斯基

    人工智能经常被人们认为是计算机科学中的一门高度复杂甚至令人生畏的学科。长期以来人工智能方面的书籍往往包含复杂矩阵代数和微分方程。本书形成于作者多年来给没有多少微积分知识的学生授课时所用的讲义,它假定读者预先没有编程的经验,并说明了智能系统中的大部分基础知识实际上是简单易懂的。   本书目前已经被国际上多所大学(例如,德国的马德堡大学、日本的广岛大学、美国的波士顿大学和罗切斯特理工学院)采用。 如果你正在寻找关于人工智能或智能系统设计课程的浅显易懂的入门级教材,如果你不是计算机科学领域的专业人员,而又正在寻找介绍基于知识系统最新技术发展的自学指南,本书将是最佳选择。   本书是关于人工智能的教科书,浅显易懂、内容全面、案例丰富、参考文献详尽,不仅适合人工智能的初学者学习,而且也非常适合非计算机背景相关学科的研究人员参考。
  • 神经网络原理

    作者:Simon Haykin

  • MATLAB神经网络应用设计

    作者:张德丰

    《MATLAB神经网络应用设计》利用目前国际上流行的MATLAB环境,结合神经网络工具箱,在深入浅出地介绍人工神经网络中的各种典型网络以及训练过程的基础上,利用MATLAB工具箱进行神经网络的设计与应用。《MATLAB神经网络应用设计》给出了各种神经网络在不同应用时的网络性能分析与直观的图形结果,使读者更加透彻地了解各种神经网络的性能及其优缺点,从而达到正确、合理和充分应用神经网络的目的。
  • 脑的高级功能与神经网络

    作者:黄秉宪

    本书是一本论述脑的高级功能,如感知、记忆、思维过程的神经网络的专著。全书以建立神经网络模型为主线,介绍了脑的结构、生理及信息处理的基本知识,并在此基础上对记忆和思维过程的原理作了探讨。本书所述内容属边缘学科性质,为便于读者理解,做到了深入浅出,注重论述的系统性。 本书可供脑科学、神经网络及信息技术等相关专业的师生和科研人员参考。
  • 意识的宇宙

    作者:[美] 杰拉尔德·埃德尔曼,[美] 朱利

    本书对意识理论进行全面研究,建立在近代神经科学基础上、致力于对意识的产生、及人们对意识的认识如何帮助其“把严格的科学描述与人类知识和经验的宽广领域联系起来”等问题进行解答。
  • Neural Networks for Pattern Recognition

    作者:Christopher M. Bisho

    This book provides the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts of pattern recognition, the book describes techniques for modelling probability density functions, and discusses the properties and relative merits of the multi-layer perceptron and radial basis function network models. It also motivates the use of various forms of error functions, and reviews the principal algorithms for error function minimization. As well as providing a detailed discussion of learning and generalization in neural networks, the book also covers the important topics of data processing, feature extraction, and prior knowledge. The book concludes with an extensive treatment of Bayesian techniques and their applications to neural networks.
  • 模式识别与神经网络

    作者:里普利

    《模式识别与神经网络(英文版)》是模式识别和神经网络方面的名著,讲述了模式识别所涉及的统计方法、神经网络和机器学习等分支。书的内容从介绍和例子开始,主要涵盖统计决策理论、线性判别分析、弹性判别分析、前馈神经网络、非参数方法、树结构分类、信念网、无监管方法、探寻优良的模式特性等方面的内容。 《模式识别与神经网络(英文版)》可作为统计与理工科研究生课程的教材,对模式识别和神经网络领域的研究人员也是极有价值的参考书。
  • 神经网络设计

    作者:戴葵