欢迎来到相识电子书!

标签:傅里叶分析

  • 傅里叶分析

    作者:格拉法科斯

    傅里叶变换是在数字信号处理方面很有用的一个方法,在通信和信息专业有很强的应用。本书总结、整理了近50年来傅里叶分析理论研究的基本成果,系统性强,内容先进全面。 作者Loukas Grafakos,希腊雅典人,在加利福尼亚大学洛杉矶分校获得博士学位,现任密苏里州大学数学教授。曾因出色的教学被授予Kemper Fellow奖,自著或与人合著了40篇傅里叶分析方面的文章。 本书内容包括Lp空间和插值,极大函数,傅里叶变换以及广义函数,一维环群上的傅里叶分析,卷积型奇异积分,Littlewood-Paley理论与乘子,光滑性和函数空间,BMO和Carleson测度,非卷积型奇异积分,加权不等式,傅里叶积分的有界性和收剑性。讲述方式易于接受,只要有本科知识就能够阅读,各章节有预备知识提要,习题例题丰富,称得上一本优秀的教材。最后提供了574篇文献目录,读研究人员也很有必要。
  • 漫画傅里叶解析

    作者:涩谷道雄

    本书以轻松有趣、通俗易懂的漫画及故事的方式将抽象、复杂的傅里叶知识融会其中,让人们在看故事的过程中就能完成对数学相关知识的“扫盲”。这是一本实用性很强的图书,与我们传统的教科书比较起来,具有几大突出的特点,一漫画的形式更易于让人接受,二边读故事边学知识,轻松且易于记忆,三更能让读者明白并记住傅里叶解析问题在现实生活中的应用。本书既可以作为人们日常生活中了解数学知识的读本,也可以作为数学及相关专业学生的参考用书,更可以是文科专业学生理性认识和学习数学知识的工具书及相关专业的参考用书。 ------- 目录 第一章 通往傅里叶变换的道路 第二章 三角函数 第三章 积分与微分 第四章 函数的四则运算 第五章 函数的正交 第六章 傅里叶变换的准备知识 第七章 傅里叶解析
  • 小波与傅里叶分析基础

    作者:Albert Boggess,Franc

  • Fourier Analysis

    作者:Elias M. Stein,Rami

    This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences - that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. "The Princeton Lectures in Analysis" represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which "Fourier Analysis" is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing "Fourier" series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.