欢迎来到相识电子书!

标签:贝叶斯

  • Bayesian Data Analysis, Third Edition

    作者:Andrew Gelman,John B

    This third edition of a classic textbook presents a comprehensive introduction to Bayesian data analysis. Written for students and researchers alike, the text is written in an easily accessible manner with chapters that contain many exercises as well as detailed worked examples taken from various disciplines. This third edition provides two new chapters on Bayesian nonparametrics and covers computation systems BUGS and R. It also offers enhanced computing advice. The book's website includes solutions to the problems, data sets, software advice, and other ancillary material.
  • 贝叶斯分析

    作者:韦来生,张伟平

    韦来生等编著的《贝叶斯分析》的主要内容从2004年以来为中国科学技术大学概率论与数理统计专业研究生讲授过多次。大约可在54学时内讲授本书第1—5章的主要内容,第6章、第7章可根据实际情况选讲其中部分内容,也可不讲。第8章主要是供阅读的材料,其中第8章8。1节可作为经验贝叶斯方法的简介。书中标“*”号的小节可略去不讲,留给读者作为阅读材料。如果要在36学时内讲授本课程,可选讲本书第1—4章的主要内容和第5章的部分内容。本书可作为相关院校研究生、青年教师以及从事统计工作的工程技术人员的参考书。
  • Think Bayes

    作者:Allen B. Downey

    If you know how to program with Python and also know a little about probability, you’re ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical notation, and use discrete probability distributions instead of continuous mathematics. Once you get the math out of the way, the Bayesian fundamentals will become clearer, and you’ll begin to apply these techniques to real-world problems. Bayesian statistical methods are becoming more common and more important, but not many resources are available to help beginners. Based on undergraduate classes taught by author Allen Downey, this book’s computational approach helps you get a solid start. Use your existing programming skills to learn and understand Bayesian statistics Work with problems involving estimation, prediction, decision analysis, evidence, and hypothesis testing Get started with simple examples, using coins, M&Ms, Dungeons & Dragons dice, paintball, and hockey Learn computational methods for solving real-world problems, such as interpreting SAT scores, simulating kidney tumors, and modeling the human microbiome.
  • 统计决策论及贝叶斯分析

    作者:(美)James O.Berger

    统计决策论及贝叶斯分析:第二版,ISBN:9787503725333,作者:(美)[J.O.伯杰]James O.Berger著;贾乃光译
  • 贝叶斯方法

    作者:[美] Thomas Leonard,

  • 贝叶斯统计

    作者:茆诗松

    《高等院校统计学专业规划教材•贝叶斯统计》共六章,可分二部分。前三章围绕先验分布介绍贝叶斯推断方法。后三章围绕损失函数介绍贝叶斯决策方法。阅读这些内容仅需要概率统计基本知识就够了。《高等院校统计学专业规划教材•贝叶斯统计》力图用生动有趣的例子来说明贝叶斯统计的基本思想和基本方法,尽量使读者对贝叶斯统计产生兴趣,引发读者使用贝叶方法去认识和解决实际问题的愿望。进而去丰富和发展贝叶斯统计。假如学生的兴趣被钓出来,愿望被引出来,那么讲授这一门课的目的也基本达到了。
  • 贝叶斯方法与科学合理性

    作者:陈晓平

    康德说,休谟把他从独断论的迷梦中惊醒。笔者认为,如果休谟能够看到康德的书,他也许会说:康德把他从经验论的泥潭中拯救。在笔者看来,这两位最伟大的哲学家,其哲学思想是相互补充的。 本书是在贝叶斯理论的框架内,采纳并改进康德的先验范畴,进而给出休谟问题的一种解决。本书对若干有关科学合理性的疑难问题给以回应,其中包括反事实条件句与科学定律、分析与综合、还原与突现以及迪昂-奎因问题等。略
  • 贝叶斯网引论

    作者:张连文

  • Rationality for Mortals

    作者:Gerd Gigerenzer

    Gerd Gigerenzer's influential work examines the rationality of individuals not from the perspective of logic or probability, but from the point of view of adaptation to the real world of human behavior and interaction with the environment. Seen from this perspective, human behavior is more rational than it might otherwise appear. This work is extremely influential and has spawned an entire research program. This volume (which follows on a previous collection, Adaptive Thinking, also published by OUP) collects his most recent articles, looking at how people use "fast and frugal heuristics" to calculate probability and risk and make decisions. It includes a newly writen, substantial introduction, and the articles have been revised and updated where appropriate. This volume should appeal, like the earlier volumes, to a broad mixture of cognitive psychologists, philosophers, economists, and others who study decision making.
  • The Theory That Would Not Die

    作者:Sharon Bertsch McGra

    Drawing on primary source material and interviews with statisticians and other scientists, "The Theory That Would Not Die" is the riveting account of how a seemingly simple theorem ignited one of the greatest scientific controversies of all time. Bayes' rule appears to be a straightforward, one-line theorem: by updating our initial beliefs with objective new information, we get a new and improved belief. To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok. In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years - at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information, even breaking Germany's Enigma code during World War II, and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA decoding to Homeland Security. "The Theory That Would Not Die" is a vivid account of the generations-long dispute over one of the greatest breakthroughs in the history of applied mathematics and statistics.
  • Bayesian Reasoning and Machine Learning

    作者:David Barber

    Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
  • Statistical Decision Theory and Bayesian Analysis

    作者:James O. Berger

    In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.
  • Probability Theory

    作者:E. T. Jaynes

    The standard rules of probability can be interpreted as uniquely valid principles in logic. In this book, E. T. Jaynes dispels the imaginary distinction between 'probability theory' and 'statistical inference', leaving a logical unity and simplicity, which provides greater technical power and flexibility in applications. This book goes beyond the conventional mathematics of probability theory, viewing the subject in a wider context. New results are discussed, along with applications of probability theory to a wide variety of problems in physics, mathematics, economics, chemistry and biology. It contains many exercises and problems, and is suitable for use as a textbook on graduate level courses involving data analysis. The material is aimed at readers who are already familiar with applied mathematics at an advanced undergraduate level or higher. The book will be of interest to scientists working in any area where inference from incomplete information is necessary.