欢迎来到相识电子书!

标签:流形

  • An Introduction to Manifolds

    作者:Loring W. Tu

    Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, "Introduction to Manifolds" is also an excellent foundation for Springer's GTM 82, "Differential Forms in Algebraic Topology".
  • 流形的拓扑学

    作者:苏竞存

    拓扑学的方法与结果在各个数学分支中有着广泛的应用,因此适当选择其中的内容供各个分支的研究者与教师之用是一个很重要的工作。本书作者以微分流形为中心写了这本书,涉及拓扑学的广泛的领域并在分析数学、几何学乃至理论物理学中均可得到重要的应用。本书的主要内容是:微分流形、示性类理论、表示论大意、Hodge理论、Hirzebruch指标定理、Riemann-Roch定理、Atiyah-Singer指标定理和Gauss-Bonnet定理等。
  • 复流形

    作者:陈省身

    《复流形(第2版)》是复流形的一大经典(全英文版),也是陈省身先生最著名的著作之一。该书是1995年版复流形理论第2版的修订版。《复流形(第2版)》以作者在California大学的讲义和Canadian数学学会的研讨班为蓝本,全面地讲述复流形理论在代数几何、复函数理论、微分算子等理论中的重要作用。《复流形(第2版)》的最大特点是复流形理论的微分几何方法是在S.-S.Chern著作的影响下发展起来的,作为第2版对该理论的引入和表示很完美,被众多数学界的学者、专家所引用,是学习Riemann几何的一本理想参考书。